Canadian Agency for Drugs and Technologies in Health Agence canadienne des médicaments et des technologies de la santé

OPTIMAL THERAPY REPORT

Volume 2, Issue 1 March 2008 Long-Acting Insulin Analogues for the Treatment of Diabetes Mellitus: Meta-analyses of Clinical Outcomes – Update of CADTH Technology Report No. 92

Supporting Informed Decisions

À l'appui des décisions éclairées

This report is prepared by the Canadian Optimal Medication Prescribing and Utilization Service (COMPUS), a service of the Canadian Agency for Drugs and Technologies in Health (CADTH). This report contains a comprehensive review of existing public literature, studies, materials, and other information and documentation (collectively the "source documentation") available to CADTH at the time it was prepared, and it was guided by expert input and advice throughout its preparation. The conclusions [statements] were provided by experts. The authors have also considered input from other stakeholders.

The information in this report is intended to help health care decision-makers, patients, health care professionals, health systems leaders and policymakers make well-informed decisions and thereby improve the quality of health care services. The information in this report should not be used as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision making process nor is it intended to replace professional medical advice. While CADTH has taken care in the preparation of the report to ensure that its contents are accurate, complete and up-to-date, CADTH does not make any guarantee to that effect. CADTH is not responsible for any errors or omissions or injury, loss or damage arising from or as a result of the use (or misuse) of any information contained in or implied by the information in this Report.

CADTH takes sole responsibility for the final form and content of this report. The statements, conclusions and views expressed herein do not necessarily represent the view of Health Canada or any Provincial or Territorial Government.

Production of this report is made possible through a financial contribution from Health Canada.

Copyright © 2008 CADTH. This Report may be reproduced for non-commercial purposes only and provided appropriate credit is given to CADTH.

External Consultants

COMPUS staff would like to thank the following people for their time, assistance, and expert input throughout the project, including guidance on the approach and methods and constructive feedback on drafts of this report.

Dr Denis Daneman Paediatrician-in-Chief, The Hospital for Sick Children Chair of Paediatrics, University of Toronto Professor, Department of Paediatrics, University of Toronto Clinician-Investigator

Contributors from HTA

COMPUS staff acknowledges the Health Technology Assessment directorate of CADTH for the production of the CADTH Technology Report no. 92, *Long-Acting Insulin Analogues for Diabetes Mellitus: Meta-analysis of Clinical Outcomes and Assessment of Cost-Effectiveness*, which served as the starting point for this research.

Khai Tran, MSc, PhD Srabani Banerjee, MSc, PhD Huimin Li, MA Karen Cimon, MLT Denis Daneman, MB BCh, FRCPC Scot H. Simpson, BSP, PharmD, MSc Kaitryn Campbell, BA(Hons), BEd, MLIS

Contributors from COMPUS

Fida Ahmad, MSc Research Officer

Annie Bai, MD MSc Advisor, COMPUS Project Quality

Greg Bak, MLIS PhD Information Specialist

Denis Bélanger, BScPhm ACPR Director, Topics and Research

Heather Bennett, BPharm PhD Manager, Optimal Practice

Chris Cameron, BSc EngDip MSc (cand) Health Economist

Michelle Fiander, MA MLIS Information Specialist

Jeannine Fraser, MA Research Officer Avtar Lal, MD MPhil (Clinical Pharmacology) Research Officer

Barb Shea, BSP Vice President, COMPUS

Sumeet R. Singh, BScPhm MSc RPh Officer, Optimal Practice

Samantha Verbrugghe, BSc Research Assistant

Changhua Yu, MD MSc Research Officer

Conflicts of Interest

Dr. Denis Daneman was co-chair of a satellite symposium at an International Diabetes Federation meeting in Cape Town, South Africa. He received partial funding from Eli Lilly Canada for a study of the role of pioglitazone in glycemic control among adolescents with poorly controlled type 1 diabetes. He is a member of the Hvidore Study Group on Childhood Diabetes, which is funded by Novo Nordisk (Denmark). He was a speaker at a workshop on long-acting analogues of insulin for children (funded by Sanofi-Aventis).

The authors have no conflicts of interest to disclose.

EXECUTIVE SUMMARY

The Issue

Acquisition costs of long-acting insulin analogues are greater than those for intermediate- and long-acting human insulins. Given limited resources, are these insulin analogues justified for all diabetic patients? In view of the increasing number of people diagnosed with diabetes mellitus (DM) each year, health care providers, consumers, and policy makers require evidence-based information on the optimal use of these agents.

Objective

To identify and synthesize the available evidence on the clinical efficacy and safety of long-acting insulin analogues, specifically insulin glargine (IGlar) and insulin detemir (IDet), in the management of DM (type 1, type 2, and gestational).

Methods

An existing systematic review of published studies examining the clinical efficacy and safety of long-acting insulin analogues in the treatment of DM was updated. Additional research questions of interest not addressed in the systematic review were also examined. Randomized controlled trials (RCTs) comparing long-acting insulin analogues with intermediate- or long-acting unmodified human insulins, or oral anti-diabetic agents, were identified through electronic databases, grey literature, reference lists, and through stakeholder consultation. Meta-analysis was conducted to pool trial results when appropriate.

Results

Fifty-eight articles representing 52 unique RCTs were included: seven studies were conducted in pediatric type 1 DM patients, 25 in adult type 1 DM patients, and 20 in adult type 2 DM patients. The number of patients in each study ranged from 14 to 756. Trial duration ranged from four to 52 weeks. The overall quality of most RCTs was low. All studies were of open-label design.

For children with type 1 DM, comparison of IGlar with neutral protamine Hagedorn (NPH) (or lente) revealed no statistically significant differences between treatments for mean glycosylated hemoglobin (A1c) at endpoint, relative risk of severe, nocturnal or overall hypoglycemia. For IGlar (plus lispro) compared with NPH (plus human insulin (HI)), there were no statistically significant differences in A1c at endpoint, or relative risk of nocturnal hypoglycemia between treatments. Compared with NPH (plus aspart), a statistically significant reduction in the relative risk [0.85 (95% CI): (0.77, 0.94)] and frequency [rate ratio (95% CI): 0.77 (0.70, 0.84)] of nocturnal hypoglycemia was shown in favour of IDet (plus aspart).

In adult patients with type 1 DM, the pooled estimate of 11 RCTs showed a statistically significant difference in mean A1c levels at endpoint in favour of IGIar treatment compared with NPH treatment [weighted mean difference (WMD) (95%CI) = -0.11% (-0.21, -0.02)]. No significant A1c difference was observed between IDet and NPH. Pooled estimates did not show statistically significant differences for severe, nocturnal, and overall hypoglycemia between IGIar and NPH. A lower frequency of nocturnal hypoglycemia was found with the combination of IGIar and lispro than with NPH and HI [rate ratio (95% CI) =0.56, (0.48, 0.65)]. In the comparison of IDet with NPH, a statistically significant risk reduction was observed for severe and nocturnal hypoglycemia in favour of IDet. As well, the frequencies of nocturnal and overall hypoglycemia were lower [rate ratios (95% CI) were 0.66 (0.60, 0.73) and 0.84 (0.74, 0.97)], respectively. When the combination of IDet and aspart was compared with NPH and HI, there was no difference observed for severe hypoglycemia, although nocturnal hypoglycemia frequency and risk were lowered [relative risk (RR) (95% CI) 0.65 (0.55, 0.77) and rate ratio (95% CI) 0.44 (0.39, 0.51)], respectively. Furthermore, the rate ratio for overall hypoglycemia significantly favoured IDet and aspart [rate ratio (95% CI)=0.78 (0.74, 0.82)]. Compared with IGlar, a statistically significant risk reduction was achieved in favour of IDet for severe [WMD (95% CI) = 0.25 (0.07, 0.86)], but not nocturnal or overall, hypoglycemia. Statistically significant reductions in severe [rate ratio (95% CI) 0.41 (0.2, 0.86)] and nocturnal hypoglycemia [rate ratio (95% CI) 0.66 (0.58, 0.76)], but not overall hypoglycemia, were also observed with IDet compared to IGIar. Compared to those in the NPH group, mean body weight at endpoint was statistically significantly lower in patients in the IGIar group [WMD (95% CI) = -0.36kg (-0.67, -0.04)] as well as the IDet group [WMD (95% CI)=-0.73kg (-1.42, -0.03)]. Patients in the IDet plus IAsp group had statistically significantly lower mean body weight at endpoint than did those in the NPH plus HI group [WMD (95% CI) = -1.10kg (-1.49, -0.71)]. Patients in the IDet had statistically significantly lower mean body weight at endpoint than did those in the IGIar group [WMD (95% CI) = -0.5kg (-1.21, 0.21)].

For adult patients with type 2 DM receiving oral antidiabetic agents (OADs), the pooled estimate of difference in mean A1c between treatment groups was not statistically significant for IGlar compared with NPH, and significantly favoured NPH in the comparison with IDet [WMD (95% CI) = 0.13 (0.03, 0.22)]. For patients not receiving OADs, the reduction in mean A1c for those using IGlar plus HI, compared with those using NPH plus HI, was statistically significant WMD (95% CI) = 0.28% (0.07, 0.49). Also, A1c was statistically significantly reduced in the pooled analysis of IGlar versus thiazolidinediones (TZDs) [WMD (95% CI) = -0.20% (-0.38. -0.01)]. Results from a single RCT showed a statistically significant A1c reduction for IDet plus IAsp compared to IGlar plus IAsp [WMD (95% CI) = -0.20% (0.10, 0.30)].

For fasting plasma glucose (FPG), there were no statistically significant differences in pooled estimates for treatment with IGlar versus NPH, IDet versus NPH, or IDet versus IGlar. A statistically significant decrease in FPG was shown for IGlar when compared with rosiglitazone [WMD (95%CI) = -1.04 mmol/L (-1.64, -0.45)].

The risk of nocturnal hypoglycemia was statistically significantly reduced for patients receiving IGlar plus OADs, compared to patients using NPH plus OADs [RR (95% CI) = 0.56 (0.47, 0.68)]; patients receiving IGlar but not OADs compared to those using NPH without OADs [RR (95% CI) = 0.78 (0.62, 0.98)]; patients using IDet plus OADs, compared to patients using NPH plus OADs [RR (95% CI) = 0.53 (0.31, 0.91)]; patients using IDet plus IAsp, compared to patients using NPH plus IAsp [RR (95% CI) = 0.66 (0.45, 0.96)]; and patients using IDet plus IAsp, compared to patients using NPH plus HI [RR (95% CI) = 0.54 (0.30, 0.97). The frequency of nocturnal hypoglycemia, for patients receiving OADs, was significantly reduced for IGlar versus NPH [rate ratio (95% CI) = 0.41 (0.29, 0.59)], and for IDet versus NPH [rate ratio (95% CI) = 0.48 (0.42, 0.55)].

The risk of severe hypoglycemia, for patients taking OADs, was not statistically significantly different for IGlar versus NPH or IDet versus NPH. However, the frequency of severe hypoglycemia was statistically significantly decreased for IGlar versus NPH [rate ratio (95%CI) = 0.56 (0.35, 0.91)] and IDet versus NPH [rate ratio (95%CI) = 0.13 (0.02, 0.91). For patients not taking OADs, the risk of severe hypoglycemia for those using IGlar compared to those using NPH was not estimable.

The risk, but not frequency, of overall hypoglycemia for patients taking OADs was statistically significantly reduced for those using IGlar compared to those using NPH [RR (95% CI) = 0.87 (0.81, 0.93)]. For patients not taking OADs, the risk of overall hypoglycemia was not statistically significantly different for those using IGlar compared to those using NPH. Differences in frequency of overall hypoglycemia were not estimable for this treatment comparison. Conversely, the frequency, but not the risk of overall hypoglycemia, for patients taking OADs, was statistically significantly decreased for the IDet group when compared to the

NPH group [rate ratio (95%CI) = 0.549 (0.48, 0.72)]. Comparisons of frequency for nocturnal, severe, and overall hypoglycemia for IGIar versus NPH were not estimable for patients not receiving OADs.

There was no significant difference in body weight in patients with Type 2 DM treated with IGlar as compared to NPH insulin, although there was a significant difference in favour of IGlar in comparison to rosiglitazone [WMD (95% CI) = -1.45kg (-2.48, -0.42)]. Significant differences in body weight in favour of IDet as compared to NPH insulin were found in patients treated concomitantly with OADs [WMD (95% CI) = -0.96kg (-1.69, -0.23)], as well as in patients treated with pre-meal IAsp [WMD (95% CI) = -0.80kg (-1.46, -0.14)]. Furthermore, change in weight from baseline significantly favoured IDet as compated to IGlar [WMD (95% CI) = -1.50kg (-2.47, -0.53)] in combination with pre-meal IAsp, and [WMD 995% CI) = -0.80kg (-1.52, -0.08)] in combination with OADs.

In both type 1 (including pediatric and adult populations) and 2 DM patients, adverse events appeared to be similar with long-acting insulin analogues and conventional insulin. Data on diabetes-related complications, mortality, and quality-of-life were sparse.

Conclusions

Most studies of the long-acting insulin analogues were of poor quality and were not designed to measure differences in clinically important outcomes. There is no evidence that IGIar offers benefit over NPH insulin in children with type 1 DM, although IDet may have benefits in terms of reduced nocturnal hypoglycemia. Compared with NPH, IGIar but not IDet produced small reductions in Atc levels in adult patients with type 1 DM, although the clinical significance of these findings is questionable. A statistically significant risk reduction in severe and nocturnal hypoglycemia was observed with IDet compared with NPH, while no significant benefit was observed for IGIar in terms of hypoglycemia. In patients with type 2 DM treated with IGIar or IDet, mean Atc levels were similar to those achieved with NPH. Both IGIar and IDet significantly reduced the risk of nocturnal hypoglycemia in type 2 DM patients. There was limited comparative data for IGIar versus IDet. Long-term comparative studies of higher quality are needed to definitively determine the clinically relevant benefits and harms of long-acting insulin analogues compared with conventional insulins.

ABBREVIATIONS

A1c	glycosylated hemoglobin
BG	blood glucose
BMI	body mass index
CAC	COMPUS advisory committee
CI	confidence interval
DKA	diabetic ketoacidosis
DNA	deoxyribonucleic acid
DM	diabetes mellitus
DTSQ	diabetes treatment satisfaction questionnaire
FPG	fasting plasma glucose
F/P/T	federal/provincial/territorial
н	human insulin (conventional)
HRQoL	health-related quality of life
lAsp	insulin aspart
IDet	insulin detemir
lGlar	insulin glargine
IGlu	insulin glulisine
ILis	insulin lispro
ITT	intention-to-treat
LDL	low-density lipoprotein
Metf	metformin
MI	myocardial infarction
NPH	neutral protamine Hagedorn
OAD	oral antidiabetic agent
QoL	quality of life
RCT	randomized controlled trial
Ros	rosiglitazone
RR	relative risk
SD	standard deviations
TZD	thiazolidinedione
WMD	weighted mean difference

GLOSSARY

Absolute risk reduction: The arithmetic difference between event rates across treatment and control groups. It is the inverse of the number needed to treat

Adverse drug events: Events resulting from administration of a drug or other circumstance surrounding use of the drug, but not necessarily caused by the drug itself.

Body mass index: A statistical measure of the weight of a person scaled according to height and it is defined as the individual's body weight divided by the square of their height.

Carryover effect: Carryover effect occurs when the treatment given in the first period has residual effect that confounds the interpretation of result in the second period.

Confidence interval: The probable range in which a population parameter lies based on a random sample of the population. The most commonly reported conference interval is the 95% confidence interval.

Congestive heart failure: A condition in which an abnormality of cardiac structure or function is responsible for the inability of the heart to fill with or eject blood at a rate commensurate with the requirements of the metabolizing tissues.

Cross-over trial: A variation of the traditional randomized controlled trial in which the intervention is applied at different times to each subject; that is, after a specified period of time the original experiment group becomes the control group, and the original control group becomes the experimental group.

Diabetes Control and Complications Trial: The DCCT is a clinical study conducted from 1983 to 1993 by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). It is the largest, most comprehensive diabetes study ever conducted

Diabetes Mellitus: A group of common metabolic disorders characterized by hyperglycemia

Diabetic ketoacidosis: An acute complication of diabetes caused by increased fatty acid metabolism and the accumulation of ketoacids. It was formerly considered a hallmark of type 1 DM, but it also occurs in individuals who lack of immunologic features of type 1 DM and who can subsequently be treated with oral glucose-lowering agents (in type 2 DM).

Effectiveness: The extent to which a specific intervention, procedure, regimen, or service produces the intended outcomes when deployed under routine circumstances.

Efficacy: The extent to which a specific intervention, procedure, regimen, or service produces a beneficial outcome under ideal circumstances.

Fasting plasma glucose: Plasma glucose level measured at the time when no caloric intake for at least 8 hours

Fixed effect model: A method for pooling data in a meta-analysis. It is assumed that the true effect of treatment is the same value in each study, or fixed, the difference between study results being due solely to chance.

Funnel plots: A graphical method used to detect publication bias. Funnel plots are simple scatter plots where treatment effects estimated from individual studies are plotted on the horizontal axis against some measure of study size on the vertical axis.

Gestational Diabetes mellitus: Defined as glucose intolerance with first onset during pregnancy. It is usually a temporary condition

Glycated haemoglobin A1c: A glycated form of haemoglobin, formed by the attachment of sugars to the molecule when glucose levels are elevated. HbA1c levels increase with the average concentration of glucose in the blood.

Health-related quality of life: A broad theoretical construct developed to explain and organize measures concerned with the evaluation of health status, attitudes, values, and perceived levels of satisfaction and general well-being with respect to either specific health conditions or life as a whole from the individual perspective

Heterogeneity (χ^2 or I^2): This statistic describes the degree of variation, as a percentage, between the results of individual studies within a meta-analysis.

Hyperglycemia: A qualitative term used to describe blood glucose that is above the normal range.

Hyperosmolar, hyperglycaemic, non-ketotic coma: A syndrome consisting of extreme hyperglycaemia, serum hyperosmolarity and dehydration in the absence of ketoacidosis. The American Diabetes Association suggests that this disorder be renamed hyperglycaemic hyperosmolar state (HHS). The prototypical patient with HHS is an elderly individual with type 2 DM, with a several week history of polyuria, weight loss, and diminished oral intake that culminates in mental confusion, lethargy, or coma.

Hypoglycemia: A qualitative term used to describe blood glucose that is below the normal range and defined by 1) the development of autonomic or neuroglycopenic symptoms; 2) a low plasma glucose level of 4.0 mmol/l for patients with insulin or an insulin secretagogue; and 3) symptoms responding to the administration of carbohydrate (Canadian Diabetes Association 2003). This definition has not been used in all the studies used in the analysis (please see appendices 10a to 11b).

Ischemic heart disease: Heart disease due to inadequate blood perfusion of the myocardium, which causes an imbalance between oxygen supply and demand.

Long-acting insulin analogues: A class of insulin analogue, produced by introducing alterations in the amino acid sequence of human insulin, which mimic the action of basal endogenous insulin secretion by providing a prolonged, non-fluctuating level of insulin activity.

Meta-analysis: Statistical synthesis of the results of individual studies that examine the same question, for the purpose of integrating findings and producing a single estimate of effect.

Myocardial infarction: (Also called heart attack) is the death of a portion of heart muscle resulting from a sudden loss of blood supply due to occlusive coronary artery thrombus, atherosclerotic plaque, vasospasm, inadequate myocardial blood flow (e.g., hypotension), or excessive metabolic demand.

Number needed to treat: It is the number of patients who need to be treated with a new treatment rather than the standard (control) treatment in order for one additional patient to benefit. It is calculated as the inverse of the absolute risk difference.

Nocturnal hypoglycaemia: Hypoglycaemic events that occur at night, usually from 24:00 h to 6:00 h. This definition has been used in most of the included studies (please see appendices 10a to 11b).

Overall hypoglycemia: Overall hypoglycemia is usually defined by either symptoms or sign of hypoglycemia and/or blood glucose < 4 mmol/L. This definition has been used in most of the included studies (please see appendices 10a to 11b).

Per-protocol analysis: An analysis of clinical trial data from which the results for subjects with major violations of the study protocol are omitted.

Publication bias: Unrepresentative publication of research reports that is not due to the scientific quality of the research but to other characteristics, e.g. tendencies of investigators to submit, and publishers to accept, positive research reports (i.e. ones with results showing a beneficial treatment effect of a new intervention).

Random effects model: This model assumes that 1) the studies included in the meta-analysis are a random sample from all possible studies, 2) the true effects observed in each study may be different from each other, and 3) those differences are normally distributed.

Randomized controlled trial: A prospective study designed to test the efficacy of an intervention in which patients are randomly allocated to either a treatment group or the control group.

Rapid-acting insulin analogue: An class of insulin analogue, produced by introducing alterations in the amino acid sequence of human insulin, which more closely mimic the short duration of action of meal-induced endogenous insulin in non-diabetic patients than does regular human insulin.

Relative risk: The ratio of the absolute risk of a disease among the exposed group to the absolute risk of the disease among the unexposed group in an epidemiological study.

Rate ratio: The ratio of the person-time incidence rate in the exposed group to the person-time incidence rate in the unexposed group in an epidemiological study.

Standard deviation: It is a measure of the variability between individual in the level of the factor being investigated.

Severe hypoglycemia: Severe hypoglycemia is defined as an event with characteristic hypoglycemic symptoms requiring assistance of another person, although some studies also required the presence of blood glucose values below a certain threshold. This definition has been used in most of the included studies (please see appendices 10a to 11b).

Systematic review: A summary of the medical literature that uses explicit methods to identify, select, appraise, and analyze studies relevant to a particular clinical question.

Transient ischemic attack: TIAs are episodes of stroke symptoms that last only briefly; the current definition of duration is < 24 h, but the average duration of TIA is about 12 min.

Type 1 diabetes mellitus: Diabetes that is primarily the result of pancreatic beta cell destruction and that is prone to ketoacidosis. This form includes cases due to an autoimmune process and those for which the aetiology of beta cell destruction is unknown.

Type 2 diabetes mellitus: It may range from predominant insulin resistance with relative insulin deficiency to a predominant secretory defect with insulin resistance.

Weighted mean difference: A method of meta-analysis used to combine measures on continuous scales (such as weight), where the mean, standard deviation and sample size in each group are known. The weight given to each study (e.g., how much influence each study has on the overall results of the meta-analysis) is determined by the precision of its estimate of effect and, in the statistical software in RevMan, is equal to the inverse of variance. This method assumes that all the trials have measured the outcome on the same scale.

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	i
ABBR	EVIATIONS	iv
1 1 1 1	NTRODUCTION 1 COMPUS 2 Project Overview 3 Goal	 1 1 1 2
2 E	BACKGROUND	2
3 1	TECHNOLOGY DESCRIPTION	4 4 5
4 9	STATEMENT OF THE ISSUE	5
5 (DBJECTIVE 5.1 Research Questions 5.2 Outcomes of Interest	 6 6 6
6 I 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	METHODS 5.1 Literature Search 5.2 Study Selection 5.3 Stakeholder Feedback 5.4 Data Handling 6.4.1 Data extraction 6.4.2 Data extracted from randomized controlled trials with three treatment arms 6.4.3 Handling of missing data 6.5 Data Analysis 6.5.1 Meta-analysis of continuous data 6.5.2 Analysis of hypoglycemia outcomes 6.5.3 Handling of crossover RCTs 6.5.4 Subgroup analysis 6.5.5 Sensitivity analysis 6.5.6 Study Quality Assessment 6.7 Heterogeneity 5.8 Publication Bias	7
7 F	RESULTS 7.1 Study Selection 7.2 Study Characteristics	 11 11 13

	7.2.1 Trials in type 1 DM	13
	7.2.2 Trials in type 2 DM	14
	7.3 Study Quality	14
	7.4 Results of Meta-analysis	
	7.4.1 Pediatric type 1 DM	
	7.4.2 Adult type 1 DM	20
	7.4.3 Pediatric type 2 DM	
	7.4.4 Adult type 2 DM	
	7.4.5 Early versus late initiation of long-acting analogues	
8	DISCUSSION	
	8.1 Type 1 DM	
	8.1.1 Pediatric population	
	8.1.2 Adult population	
	8.2 Type 2 DM	62
	8.3 Hypoglycemia Benefits of the Long-Acting Analogues	64
	8.4 Limitations	65
9	CONCLUSION	
10	REFERENCES	67

LIST OF TABLES

Table 2:	Summary of results of meta-analyses for comparison of insulin glargine versus NPH for the treatment of pediatric type 1 DM – Hypoglycemia relative risks	17
Table 3:	Summary of results for comparison of insulin glargine+lispro versus NPH+human insulin for the treatment of pediatric type 1 DM – Hypoglycemia relative risks and rate ratios	17
Table 4:	Summary of results for comparison of insulin detemir versus NPH (with aspart as bolus therapy) for the treatment of pediatric type 1 DM – Hypoglycemia relative risks and rate ratios	17
Table 5:	Summary of results for comparison of long-acting insulin analogues with	19
Table 6:	Summary of results for comparison of long-acting insulin analogues with NPH in pediatric type 1 DM – Relative risk of diabetic ketoacidosis	19
Table 7:	Summary of results of meta-analyses for comparison of long-acting insulin analogues versus NPH insulin in adult type 1 DM – Overall results, subgroup analyses, and sensitivity analyses for mean A1c (%)	20
Table 8:	Summary of results of meta-analyses for comparison of insulin glargine versus NPH in adult	23
Table 9:	Summary of results for comparison of insulin glargine+lispro versus NPH+human insulin in adult type 1 DM: Relative risk and rate ratio of severe, nocturnal, and overall hypoglycemia	27

Table 10:	Summary of results for comparison of insulin glargine versus ultralente in adult type 1 DM – Rate ratio of severe, nocturnal, and overall hypoglycemia
Table 11:	Summary of results of meta-analyses for comparison of insulin detemir versus NPH in adult Type 1 DM – Overall results, subgroup analyses, and sensitivity analyses for relative risk and rate ratio of severe, nocturnal, and overall
	hypoglycemia
Table 12:	Summary of results for comparison of insulin detemir+aspart versus NPH+human insulin in adult type 1 DM – Relative risk and rate ratio of severe, nocturnal, and overall hypoglycemia
Table 13:	Summary of results for comparison of insulin detemir versus glargine in adult type 1 DM – Relative risk and rate ratio of severe, nocturnal, and overall
T 11	hypoglycemia
l able 14:	analogues versus NPH in adult type 1 DM: Overall results, subgroup analyses, and
Table 15	Summary of results of meta-analyses for comparison of long-acting insulin
Table 15.	analogues versus NPH insulin or OADs in adult type 2 DM – Overall results
	subgroup analyses, and sensitivity analyses for mean A1c (%) and relative risk of
	achieving A1c≤7%
Table 16:	Summary of results of meta-analyses for comparison of long-acting insulin
	analogues versus NPH insulin or OADs in adult type 2 DM – Overall results,
	subgroup analyses, and sensitivity analyses for mean FPG (mmol/L)
Table 17:	Summary of results of meta-analyses for comparison of insulin glargine versus
	NPH in adult type 2 DM, in patients also receiving oral antidiabetic agents –
	Overall results, subgroup analyses, and sensitivity analyses for relative risk and
	rate ratio of severe, nocturnal, and overall hypoglycemia
Table 18:	Summary of results for comparison of insulin glargine versus NPH in adult
	type 2 DM, in patients not receiving oral antidiabetic agents* – Relative risk
	of severe, nocturnal, and overall hypoglycemia47
Table 19:	Summary of results of meta-analyses for comparison of insulin detemir versus
	NPH in adult type 2 DM, in patients also receiving oral antidiabetic agents –
	Relative risk and rate ratio of severe, nocturnal, and overall hypoglycemia
Table 20:	Summary of results for comparison of insulin detemir versus NPH in adult
	type 2 DM, in patients receiving IAsp as pre-meal insulin – Relative risk of severe,
	nocturnal, and overall hypoglycemia49
Table 21:	Summary of results for comparison of insulin detemir+aspart versus NPH+human
	insulin in adult type 2 DM: Relative risk and rate ratio of severe, nocturnal, and
	overall hypoglycemia
Table 22:	Summary of results of meta-analyses for comparison of insulin glargine with TZDs
	in adult type 2 DM – Relative risk of severe, nocturnal, and overall hypoglycemia 50
Table 23:	Summary of results of meta-analysis for comparison of long-acting insulin
	analogues with NPH or TZDs in adult type 2 DM – Body mass index
Table 24:	Summary of results of meta-analysis for comparison of long-acting insulin
	analogues with NPH or 12Ds in adult type 2 DM – Body weight

Summary of results for comparison of long-acting insulin analogues with NPH	
or TZDs in adult type 2 DM – Blood pressure	55
Summary of results of meta-analysis for comparison of long-acting insulin	
analogues with NPH or TZDs in adult type 2 DM – LDL-cholesterol	56
Summary of results of meta-analysis for comparison of insulin glargine versus	
NPH in adult type 2 DM – Risk of non-fatal ischemic heart disease	58
	Summary of results for comparison of long-acting insulin analogues with NPH or TZDs in adult type 2 DM – Blood pressure Summary of results of meta-analysis for comparison of long-acting insulin analogues with NPH or TZDs in adult type 2 DM – LDL-cholesterol Summary of results of meta-analysis for comparison of insulin glargine versus NPH in adult type 2 DM – Risk of non-fatal ischemic heart disease

LIST OF FIGURES

Figure 1:	Study selection process12
Figure 2:	Forest plot of all RCTs that examined the use of insulin glargine versus NPH for the
	treatment of type 1 DM in pediatric patients – A1c, weighted mean difference16
Figure 3:	Forest plot of all RCTs that examined the use of insulin glargine versus NPH for the
	treatment of pediatric type 1 DM patients – Relative risk of severe hypoglycemia18
Figure 4:	Forest plot of all RCTs that examined the use of insulin glargine versus NPH for the
	treatment of pediatric type 1 DM patients – Relative risk of overall hypoglycemia18
Figure 5:	Forest plot of all RCTs that examined the use insulin glargine versus NPH for the
	treatment of type 1 DM in adult patients – A1c, weighted mean difference
Figure 6:	Forest plot of all RCTs that examined the use of insulin detemir versus NPH for the
	treatment of type 1 DM in adult patients – A1c, weighted mean difference
Figure 7:	Forest plot of all RCTs that examined the use of insulin glargine versus NPH for the
	treatment of type 1 DM in adult patients – Relative risk of severe hypoglycemia
Figure 8:	Forest plot of all RCTs that examined the use of insulin glargine versus NPH for the
	treatment of type 1 DM in adult patients – Rate ratio of severe hypoglycemia
Figure 9:	Forest plot of all RCTs that examined the use of insulin glargine versus NPH for the
	treatment of type 1 DM in adult patients – Relative risk of nocturnal hypoglycemia:
F .	Events
Figure 10:	Forest plot of all RCI's that examined the use of insulin glargine versus NPH for the
F :	treatment of type 1 DM in adult patients – Rate ratio of nocturnal nypoglycemia 25
Figure 11:	Forest plot of all RCI's that examined the use of insulin glargine versus NPH for the
	Events
Eigure 12.	Events
rigure iz:	treatment of type 1 DM in adult nations – Pate ratio of overall hypoglycemia
Figure 12.	Forest plot of all RCTs that examined the use of insulin determiny pogrycering
riguie 13.	treatment of type 1 DM in adult nations – Relative risk of severe hypoglycemia:
	Number of natients with at least one enisode
Figure 14.	Forest plot of all RCTs that examined the use of insulin determin versus NPH for the
	treatment of type 1 DM in adult patients – Rate ratio for severe hypoglycemia
Figure 15:	Forest plot of all RCTs that examined the use of insulin detemir versus NPH for the
	treatment of type 1 DM in adult patients – Relative risk of nocturnal hypoglycemia:
	Number of patients with at least one episode
Figure 16:	Forest plot of all RCTs that examined the use of insulin detemir versus NPH for the
J	treatment of type 1 DM in adult patients – Rate ratio for nocturnal hypoglycemia 30

Figure 17:	Forest plot of all RCTs that examined the use of insulin detemir versus NPH for the treatment of type 1 DM in adult patients – Relative risk of overall hypoglycemia:
	Number of patients withat least one episode
Figure 18:	Forest plot of all RCTs that examined the use of insulin detemir versus NPH for the
	treatment of type 1 DM in adult patients – Rate ratio of overall hypoglycemia
Figure 19:	Forest plot of all RCTs that examined the use insulin glargine versus NPH for the
	treatment of type 1 DM in adult patients – Body weight, weighted mean difference 34
Figure 20:	Forest plot of all RCTs that examined the use of insulin detemir versus NPH for the
0	treatment of type 1 DM in adult patients – Body weight, weighted mean difference 34
Figure 21.	Forest plot of all RCTs that examined the use of insulin detemir versus NPH for the
1.8410 211	treatment of type 1 DM in adult natients – Relative risk of retinonathy: Number of
	nationts
Eiguro 22.	Forest plot of all PCTs that examined the use of insulin glarging (OAD versus
rigule 22:	NPU OAD for the treatment of two 2 DM in adult nation of two weighted mean
	difference
F :	Great alot of all DCTs that averaging d the use insulin planning (OAD) serves
Figure 23:	Forest plot of all RCTs that examined the use insulin glargine+OAD versus
	NPH+OAD for the treatment of type 2 DM in adult patients – Relative risk of
	achieving Aic≤7%
Figure 24:	Forest plot of all RCTs that examined the use of insulin detemir+OAD versus
	NPH+OAD for the treatment of type 2 DM in adult patients – A1c, weighted mean
	difference
Figure 25:	Forest plot of all RCTs that examined the use of insulin glargine versus OAD for the
	treatment of type 2 DM in adult patients – A1c, weighted mean difference40
Figure 26:	Forest plot of all RCTs that examined the use of insulin glargine+OAD versus
	NPH+OAD for the treatment of type 2 DM in adult patients – FPG, weighted mean
	difference40
Figure 27:	Forest plot of all RCTs that examined the use of insulin detemir+OAD versus
	NPH+OAD for the treatment of type 2 DM in adult patients – FPG, weighted mean
	difference
Figure 28:	Forest plot of all RCTs that examined the use of insulin glargine+OAD versus
	NPH+OAD for the treatment of type 2 DM in adult patients – Relative risk of
	severe hypoglycemia44
Figure 29:	Forest plot of all RCTs that examined the use insulin glargine+OAD versus
0	NPH+OAD for the treatment of type 2 DM in adult patients – Rate ratio of severe
	hypoglycemia
Figure 30:	Forest plot of all RCTs that examined the use of insulin glargine+OAD versus
0 5	NPH+OAD for the treatment of type 2 DM in adult patients – Relative risk of
	nocturnal hypoglycemia
Figure 31:	Forest plot of all RCTs that examined the use insulin glargine+OAD versus
i igure jii	NPH+OAD for the treatment of type 2 DM in adult nations – Rate ratio of
	nocturnal hypoglycemia
Figure 22.	Forest plot of all RCTs that examined the use of insulin glargine+OAD versus
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	NPH+OAD for the treatment of type 2 DM in adult nations – Relative risk of overall
	hynoglycemia
	туровусстна

Figure 33:	Forest plot of all RCTs that examined the use of insulin glargine+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Rate ratio of overall	
	hypoglycemia	.46
Figure 34:	Forest plot of all RCTs that examined the use of insulin detemir+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Relative risk of severe	
Figure 35:	Forest plot of all RCTs that examined the use of insulin detemir+OAD versus	. 47
	NPH+OAD for the treatment of type 2 DM in adult patients – Relative risk of nocturnal hypoglycemia	.48
Figure 36:	Forest plot of all RCTs that examined the use of insulin detemir+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Relative risk of overall hypoglycemia	.48
Figure 37:	Forest plot of all RCTs that examined the use of insulin detemir+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Rate ratio of nocturnal hypoglycemia	48
Figure 38:	Forest plot of all RCTs that examined the use of insulin detemir+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Rate ratio of overall hypoglycemia	40
Figure 39:	Forest plot of all RCTs that examined the use insulin glargine versus OAD for the treatment of type 2 DM in adult patients – Relative risk of severe hypoglycemia	51
Figure 40:	Forest plot of all RCTs that examined the use insulin glargine versus OAD for the treatment of type 2 DM in adult patients – Relative risk of overall hypoglycemia	5
Figure 41:	Forest plot of all RCTs that examined the use of insulin glargine+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Body mass index, weighted mean difference	. 52
Figure 42:	Forest plot of all RCTs that examined the use of insulin glargine+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Body weight (change from baseline or mean at endpoint) weighted mean difference	
Figure 43:	Forest plot of all RCTs that examined the use of insulin detemir+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Change in body	
Figure 44:	Forest plot of all RCTs that examined the use insulin glargine versus OAD for the treatment of type 2 DM in adult patients – Body weight gain, weighted mean difference	
Figure 45:	Forest plot of all RCTs that examined the use of insulin glargine+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – LDL cholesterol, weighted mean difference	55
Figure 46:	Forest plot of all RCTs that examined the use insulin glargine versus OAD for the treatment of type 2 DM in adult patients – LDL cholesterol, weighted mean difference	.56
Figure 47:	Forest plot of all RCTs that examined the use of insulin glargine+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Non-fatal MI	- 57

APPENDICES

s 78
83
90
91
92
93
94
95
96
100
104
111
113
129
141
146
149
152
155
160
164
174
175
177
178
179
-

1 INTRODUCTION

1.1 COMPUS

The Canadian Optimal Medication Prescribing and Utilization Service (COMPUS), a directorate of the Canadian Agency for Drugs and Technologies in Health (CADTH), is a collaborative, national service funded by Health Canada. In partnership with federal, provincial, and territorial (F/P/T) health ministries, COMPUS identifies and promotes evidence-based optimal practices in drug prescribing and use among health care providers and consumers and contributes to the reassessment of a drug or class of drugs during its lifecycle.

The goal of COMPUS is to optimize drug-related health outcomes and promote cost-effective use of drugs that have been in the marketplace for some time. Individual jurisdictions promote optimal drug therapy in a variety of unique and successful ways. COMPUS coordinates and builds on those existing initiatives to provide a national collaborative to ensure that messages directed at prescribers, patients, and third-party payers (including governments) reflect new information in a timely manner. By creating efficiencies and reducing duplication of effort, COMPUS contributes to the quality and effectiveness of the Canadian health care system. The COMPUS mandate directly addresses one of the original nine strategies of the National Pharmaceuticals Strategy: "Enhance action to influence the prescribing behaviour of health care professionals so that drugs are used only when needed and the right drug is used for the right problem."

Direction and advice are provided to COMPUS through various channels, including the following:

- The COMPUS Advisory Committee (CAC). The CAC is comprised of representatives from the F/P/T health ministries and related health organizations. The mandate of the CAC is to provide advice to the CADTH Board of Directors and the COMPUS Directorate on priorities and topics for optimal practice initiatives, COMPUS activities and products, and other issues, where appropriate, to enable COMPUS to meet its goals and objectives.
- The COMPUS Expert Review Committee (CERC). CERC is an expert advisory body of health and other professionals with expertise in drug therapy and evaluation of evidence. The mandate of CERC is advisory in nature and is to provide recommendations and advice to the COMPUS Directorate at CADTH on assigned topics that relate to the identification, evaluation, and promotion of optimal therapy in the prescribing and use of drugs across Canada.
- Stakeholder input and expert advice.

1.2 Project Overview

CAC has identified management of diabetes mellitus (DM) as being a priority area for optimal practice initiatives. Management of DM was identified as a priority area based on criteria including:

- Over- or under-use of prescription medications
- Size of patient populations
- Potential impact on health outcomes and cost-effectiveness
- Potential to effect change
- Benefit to multiple jurisdictions
- Measurable outcomes.

Within DM management, six priority areas were identified by F/P/T jurisdictions:

- Comparison of long-acting insulin analogues, human insulins (HI), and oral antidiabetic agents (OADs)
- Comparison of rapid-acting insulin analogues, HI, and OADs
- Comparison of "glitazones" to other OADs
- Metformin as first line agent in type 2 DM
- Identification of optimal blood glucose (BG) testing frequency in type 2 DM
- Identification of optimal BG testing frequency in type 1 DM.

Research efforts for each priority area focus on the following six areas: 1) clinical evaluation, 2) economic evaluation, 3) current utilization analysis, 4) current practice analysis, 5) gap analysis, and 6) barriers to optimal use. The clinical and economic evaluations are used by a CERC to generate recommendations for the optimal prescribing and use of the technology under study.

This report describes the results of a systematic review and meta-analysis conducted as part of the clinical evaluation of the long-acting insulin analogues.

1.3 Goal

The goal of this systematic review was to examine the efficacy of long-acting insulin analogues relative to unmodified human insulins in the treatment of patients with type 1, type 2, and gestational DM.

2 BACKGROUND

DM comprises a group of common metabolic disorders characterized by hyperglycemia (elevated BG levels).¹ It is a chronic condition in which the body is unable to produce sufficient insulin and/or unable to properly use insulin.¹ Insulin, a hormone secreted by pancreatic islet cells in response to increased BG levels, promotes the uptake of glucose into cells where it can be used as a source of energy.¹ Diabetes is classified as:²

- Type 1 DM little or no insulin produced by the body (previously classified as insulin-dependent DM or juvenile-onset diabetes)
- Type 2 DM the body produces insulin but is unable to use it properly (previously classified as non-insulin dependent DM)
- GDM is defined as glucose intolerance with first onset during pregnancy. It is usually a temporary condition.
- Other mainly specific genetically defined forms of diabetes or diabetes associated with other disease or drug use (e.g., genetic defects of β-cell function; genetic defects in insulin action; disease of the pancreas; endocrinopathies, infections; uncommon forms of immune-mediated diabetes, either drug- or chemical-induced; and other genetic syndromes sometimes associated with diabetes).

Without adequate control of BG, vascular and non-vascular complications may ensue. These can be further subdivided into microvascular (retinopathy, neuropathy, and nephropathy) and macrovascular (coronary artery disease, peripheral artery disease, and cerebrovascular disease) complications. Non-vascular complications include problems such as gastroparesis, infections, and skin changes. Successful management of DM requires an educated and motivated patient with support from a multidisciplinary health care team. In combination with diet modifications, weight control, and adequate exercise, medications can assist patients in controlling BG levels to reduce their risk of developing long-term diabetic complications.³ Maintaining glycemic levels near normal has been shown to lower the risk of microvascular complications^{3,4} and macrovascular complications.⁵⁻⁸

The prevalence of diabetes worldwide is estimated to be 177 million, and this number is projected to increase to 300 million by 2025.⁹ According to the Health Canada National Diabetes Surveillance System, over 1 million (4.8%) Canadians aged 20 years and older were diagnosed with diabetes in 1998/1999.¹⁰ However, the true prevalence of diabetes may actually approach 1.9 million as many cases are undiagnosed.¹¹ It is estimated that 2.7% of the general adult population have undiagnosed type 2 DM.² Assuming 10% of all diabetes cases are type 1 and 90% are type 2, 105,410 (0.48%) and 948,690 (4.32%) Canadians were diagnosed with type 1 and type 2 DM, respectively in 1998/1999.

There are no known modifiable risk factors for type 1 DM and consequently race, ethnic background, age, and genetics will determine the relative risk of a person acquiring this disease.¹⁰ Type 1 DM is more prevalent among Caucasian individuals compared with those of African or Hispanic decent, whereas type 2 DM is more highly correlated with socio-economic status than race or ethnic background. Aboriginal peoples and immigrants have greater susceptibility to the development of type 2 DM.^{10,12} People with a family history of type 1 DM also have a slightly increased risk of developing diabetes. In patients with type 2 DM, modifiable risk factors include quality and quantity of nutritional intake as well as the amount and type of physical activity.² Adoption of a healthy lifestyle reduces the probability of acquiring hypertension, dyslipidemia, abdominal obesity, and reaching overweight or obese status^{13,14} However, the industrial and social influences of the 21st century are not always conducive to the incorporation of optimal dietary and physical activity behaviours. Consequently, more Canadians are gaining weight – mostly by increasing fat stores – and increasing their risk for developing type 2 DM. It has been shown that the prevalence of type 2 DM increases by 5% to 10% among adults for every 1 kg increase in population-measured body weight.¹⁰

The quality and duration of life is often significantly diminished in individuals who have DM. According to the 1998/1999 National Population Health Survey, only 64.5% of individuals with DM reported their health to be good or better compared with 90.8% of individuals without DM (p<0.05). Individuals who are 20 years and older with diabetes are also less active than those without diabetes (17.3% versus 11.1%, p<0.05).¹⁰ Life expectancy for people with type 1 DM may be shortened by as much as 15 years, and by five to 10 years for those with type 2 DM.¹⁰

Diabetes is one of the top 10 leading causes of death in Canada.¹⁰ In 1999, Health Canada¹⁰ reported 6,137 deaths as being directly attributable to DM. This number is projected to increase to almost 17,500 deaths per year, with a similar distribution between men and women.¹⁰ The total economic burden of diabetes (diagnosed and undiagnosed) and its complications in Canada was estimated to range between US \$4.76 and \$5.23 billion dollars in 1998. Direct medical costs in patients diagnosed with diabetes accounted for approximately 7.8% of total medical expenditures in 1998, of which 50% was spent on hospital care, 19% on physician fees, and 31% on medications.¹¹ Over three-quarters of people with diabetes use either insulin or OAD agents to control the progression of the disease.¹⁰

Among Ontario residents covered by provincial drug benefit programs, approximately 29% of patients with DM took only a single oral anti-hyperglycemic drug, while 17% took more than one type of medication.¹⁵ Insulin was used by 11% of people; 3% of beneficiaries combined insulin with

OAD medications.¹⁵ The number of elderly people using insulins in this population increased from 30,104 in 1995 to 38,258 in 2001, representing a 27% increase. The total cost of all hyperglycemic agents among beneficiaries increased from \$23 million in 1995 to \$33 million in 2001.¹⁵ Insulins accounted for over 14 million dollars in 2001, representing the highest costs in the Ontario Drug Benefit program among anti-hyperglycemic agents.¹⁵ Given this sharp increase in the use of insulin agents and associated costs, the optimal prescribing of these drugs is paramount.

3 TECHNOLOGY DESCRIPTION

One goal of DM management is to maintain control of BG levels in order to reduce the patient's risk of developing long-term diabetes-related complications. In combination with lifestyle measures (e.g., weight control, proper nutrition, and adequate exercise), medications play an important role in managing glucose control in DM.¹⁵ There are seven classes of antidiabetic drugs currently available in Canada:

- Sulfonylureas (including glyburide and gliclazide)
- Biguanides (metformin)
- Alpha-glucosidase inhibitors (acarbose)
- Meglinitides (repaglinide and nateglinide)
- Thiazolidinediones (rosiglitazone and pioglitazone)
- Dipeptidyl peptidase 4 (DPP-4) inhibitors (sitagliptin)
- Insulin and insulin analogues.

Insulin is indicated for all patients with type 1 DM, as well as for patients with type 2 DM who are unable to achieve adequate glycemic control by other measures (exercise, diet, and/or other antidiabetic agents). Insulin products can be classified according to the source of insulin into human insulin, insulin analogues, and animal-sourced insulin.

3.1 Human Insulin

Human insulin (HI), a biosynthetic insulin prepared using recombinant DNA technology, is available in three types:

- Short-acting or regular HI Humulin[®], Novolin Toronto
- Intermediate-acting HI neutral protamine Hagedorn (NPH), Lente[®] (recently discontinued by the manufacturer)
- Long-acting HI Ultralente[®] (recently discontinued by the manufacturer).

Short-acting insulin has an onset of action of 30 to 60 minutes, reaches its peak in two to three hours, and has an effective duration of eight to 10 hours.¹⁶ NPH or intermediate-acting insulin has an onset of action of two to four hours, reaches its peak in four to 10 hours, and has an effective duration of 12 to 18 hours.¹⁶ Ultralente insulin, recently discontinued by the manufacturer, has an onset of action of six to 10 hours, reaches its peak in 10 to 16 hours, and has an effective duration of 18 to 25 hours.¹⁶ The pharmacokinetic profiles of the human insulins are such that it is not always possible to replicate the pattern of basal and meal-time secretion of endogenous insulin, even with multiple daily injections. Glycemic control may, therefore, be sub-optimal. Apart from the potential for increased risk of diabetic complications, poor control may also increase the risk of hypoglycemia (abnormally low BG levels).¹⁶

3.2 Insulin Analogues

In response to the limitations of the human insulins, insulin analogues were developed to more closely mimic the basal and meal-time components of endogenous insulin secretion. The analogues were produced by introducing alterations in the amino acid sequence of HI.¹⁶ There are two types of insulin analogues: rapid-acting and long-acting. Rapid-acting insulin analogues more closely mimic the short duration of action of meal-induced endogenous insulin in non-diabetic patients than does regular HI. Long-acting insulin analogues mimic the action of basal endogenous insulin secretion by providing a prolonged, non-fluctuating level of insulin activity.

Rapid-acting insulin analogues approved for use in Canada include:

- Insulin lispro (ILis), marketed as Humalog®
- 25% ILis, 75% ILis protamine, marketed as Humalog Mix 25
- 50% ILis, 50% ILis protamine, marketed as Humalog Mix 50
- Insulin aspart (IAsp), marketed as NovoRapid®
- 30% IAsp, 70% IAsp protamine, marketed as Novomix[™] 30
- Insulin glulisine (IGlu) not currently marketed in Canada (Apidra®).

Long-acting insulin analogues approved for use in Canada include:

- Insulin glargine (IGlar), marketed as Lantus®
- Insulin detemir (IDet), marketed as Levemir[®].

Insulin lispro (ILis) and insulin aspart (IAsp) have an onset of action of five to 15 minutes, reach their peak in 30 to 90 minutes, and have an effective duration of four to six hours.¹⁶ Insulin glargine (IGlar) forms microprecipitates upon subcutaneous injection, from which the drug is released slowly into the circulation. IGlar has an effective duration of 20 to 24 hours, without evidence of a peak.¹⁶ Insulin detemir, a long-acting insulin analog, has similar pharmacokinetic/pharmacodynamic characteristics as IGlar,¹⁷ although there is evidence that its duration of effect may be somewhat shorter.¹⁸

4 STATEMENT OF THE ISSUE

The human insulins are listed for reimbursement on all provincial and territorial public drug plan formularies. However, this is not the case for the insulin analogues, which are more expensive than the human insulins. Long-acting insulin analogues are not listed for reimbursement on any of the public drug plans (except for IGIar in B.C., under Special Authority Coverage), while coverage for rapid-acting insulin analogues differs by jurisdiction.

Drug plans, however, are receiving an increasing number of requests for insulin analogues as initiation therapy over human insulins. Furthermore, an increasing number of people are being diagnosed with diabetes each year.¹⁹ Thus, a need exists to provide evidence-based information surrounding the optimal use of insulin analogues for the management of DM in Canada. The first step in this process is synthesis of the available clinical data on the comparative efficacy and safety of these agents.

5 OBJECTIVE

The objective of this study was to conduct a systematic review and meta-analysis of the clinical efficacy and safety of the long-acting insulin analogues compared with intermediate- and long-acting unmodified human insulins and OAD agents, for the treatment of type 1, type 2, and gestational DM.

5.1 Research Questions

To achieve the stated objective, the following research questions were developed:

- 1. What are the patient-relevant and clinical benefits and harms associated with the use of longacting insulin analogues (i.e., IGlar or IDet) compared with intermediate- or long-acting human insulins (i.e., NPH, ultralente) or OADs in the treatment of DM (type 1, type 2, or gestational)?
- 2. Are there sub-populations of diabetic patients (e.g., elderly people, children, aboriginal peoples and other ethnic minorities, pregnant patients) who may particularly benefit from treatment with long-acting insulin analogues, in comparison with intermediate- or long-acting human insulins or OAD agents?
- 3. Are there clinically important differences between the use of a combination of a long-acting insulin analogue (i.e., IGlar or IDet) and a rapid-acting insulin analogue [i.e., insulin aspart (IAsp) or insulin lispro (ILisp)], versus the combination of an intermediate- or long-acting human insulin (e.g., NPH) and short-acting human insulin, in the treatment of DM (type 1, type 2, or gestational)?
- 4. What are the patient-relevant and clinical benefits and harms of long-acting insulin analogues in combination with OAD agents compared with intermediate- or long-acting human insulins in combination with OAD agents in the treatment of type 2 DM?
- 5. Compared with intermediate- or long-acting human insulins, are there differences in the clinical effects of long-acting insulin analogues when used at the onset versus later in the course of the disease for patients with type 2 DM?
- 6. Are there clinically important differences between the two available long-acting insulin analogues (i.e., IDet versus IGlar) in the treatment of DM (type 1, type 2, or gestational)?

5.2 Outcomes of Interest

Outcomes of interest for gestational and type 1 DM were glycosylated hemoglobin (A1c) (both mean at endpoint and proportion achieving \leq 7%); mean two-hour post-prandial plasma glucose; severe, nocturnal, and overall hypoglycemia (relative risk and rate ratio); mean weight, body mass index (BMI), and waist-to-hip ratio (in type 1 DM only); diabetic ketoacidosis; both generic and diabetes-specific health-related quality of life (HRQoL); patient satisfaction with diabetes care and treatment; patient self-management efficacy; resource utilization (i.e., cost of treatment; number of visits to ER, primary care, specialists; hospitalizations); long-term diabetes complications (i.e., ischemic heart disease, congestive heart failure, stroke / transient-ischemic attack (TIA),

nephropathy, retinopathy, lower-limb disease, neuropathy, peripheral vascular disease, mortality); and adverse events.

Outcomes of interest in type 2 DM were the same as in type 1, except that fasting plasma glucose (both mean at endpoint and proportion achieving ≤7 mmol/L); hyperosmolar, hyperglycemic, non-ketotic coma; systolic and diastolic blood pressure; low-density lipoprotein (LDL)-cholesterol; and the ratio of total cholesterol to high-density lipoprotein (HDL)-cholesterol (i.e., TC: HDL-C) were also assessed.

6 METHODS

CADTH Technology Report no. 92, Long-Acting Insulin Analogues for Diabetes Mellitus: Metaanalysis of Clinical Outcomes and Assessment of Cost-Effectiveness,²⁰ served as the starting point for this research. We found that while the technology report addressed research questions 1, 2, 4, and 5 (see Section 6, above), it did not address questions 3 and 6. Consequently, while we were able to use the technology report literature search results for questions 1, 2, 4, and 5, we were required to construct additional searches for questions 3 and 6.

6.1 Literature Search

The literature search strategy and methodology for CADTH Technology Report no. 92²⁰ are provided in Appendix 1a. COMPUS researchers reviewed results of the technology report search from March 2006, when the authors stopped reviewing citations, until April 2007. The grey literature search results were supplemented by updated searches of selected HTA agencies, guideline organizations, and diabetes association web sites from 2005, when the technology report search was run, onward. Particular emphasis was placed on searching for conference abstracts.

An information specialist constructed a search strategy to address questions 3 and 6 (Section 6). This search was peer-reviewed by another information specialist external to the project. This search strategy was devised to locate clinical evidence focussing specifically on the combined use of long-acting with short-acting insulin analogues.

The following bibliographic databases were searched through the Ovid interface: MedLine (1966present; MedLine In-Process & Other Non-Indexed Citations, MedLine Daily Update), EMBASE (1980present), and BIOSIS Previews (1989-present). The Cochrane Library was searched using the Wiley interface. The search strategy was comprised of both controlled vocabulary, such as the National Library of Medicine's MeSH (Medical Subject Headings), and keywords. The main search concepts were diabetes and long-acting insulin analogues (glargine and detemir) and short-acting insulin analogues (glulisine, lispro, and aspart). A literature filter was applied to limit retrieval to randomized controlled trials. See Appendix 1b for the detailed search strategy.

The search was restricted only by date, from 1990 onward, and by human population. Monthly update searches were established following the initial search in December 2006. Alert results were reviewed from January 2006 until April 2007.

Literature searches were also conducted for observational studies including, but not limited to, cohort, retrospective, follow-up, and prospective designs. The search strategy (shown in Appendix 1c) was developed by an information specialist with input from COMPUS researchers. The search

was peer-reviewed by an information specialist outside of the project. The following bibliographic databases were searched through the Ovid interface: MedLine (1950-June 2007; In-Process & Other Non-Indexed Citations; Daily Update), EMBASE (1975-June 2007), BIOSIS Previews (1985-1989 and 1989-June 2007). The search strategy was comprised of both controlled vocabulary, such as the National Library of Medicine's MeSH (Medical Subject Headings), and keywords. No limits were placed on the search. The main search concepts were diabetes and insulin analogues. Study design filters were applied to limit retrieval to observational studies.

6.2 Study Selection

The same study selection criteria described in the technology report²⁰ were used for questions 1, 2, 4, and 5 (Appendix 2a). For questions 4 and 6, additional inclusion and exclusion criteria were developed (Appendix 2b).

Considerable caution was exercised to ensure that duplicate publications of the same trial, or single-centre results from multi-centre trials, were not included. In cases where study data was reported in several publications, the most recent article was selected for each outcome of interest.

To reduce bias, oversight, and inconsistency, two reviewers independently determined whether studies met inclusion criteria. Each reviewer independently performed an initial screening of identified articles by examining titles, abstracts, and keywords for relevance to the review topic. Abstracts of articles were assessed and categorized as "included," "uncertain," or "excluded" by each reviewer. If the relevance of a citation was considered uncertain, the citation was retained. Full-text articles were obtained for those citations identified as "included" or "uncertain" by each reviewer. All full-text articles were independently assessed by each reviewer against the inclusion and exclusion criteria. Discrepancies were resolved by consensus or by a third reviewer in the event that consensus was not reached.

6.3 Stakeholder Feedback

A list of studies included in Technology Report 87: Short-acting Insulin Analogues for Diabetes Mellitus: Meta-analysis of Clinical Outcomes and Assessment of Cost-effectiveness²¹ was posted on the COMPUS web site to give stakeholders the opportunity to provide additional evidence. Evidence from stakeholders was considered only if it met the selection criteria.

6.4 Data Handling

6.4.1 Data extraction

A data extraction form (Appendix 4), designed a priori, was used to document study design, population characteristics, interventions, and data on relevant outcomes. Two reviewers independently extracted data from each article. Differences were discussed and resolved by consensus. When necessary, authors were contacted for missing data. Data extraction was not repeated for study-level data reported in the original CADTH report.

To ensure the accuracy of data extraction, consensus results were checked against original articles by a third reviewer. Any discrepancy identified by the third reviewer was discussed with the original reviewers until agreement was reached.

6.4.2 Data extracted from randomized controlled trials with three treatment arms

If study designs contained two analogue treatment arms to allow for assessment of two different dosing regimens or of different formulations, data were only extracted for the treatment arm in which the analogue was administered at the same time as NPH. In cases where NPH was dosed more than once daily, the arm in which the analogue was administered in the evening or at bedtime was chosen. For randomized controlled trials (RCTs) in which more than one formulation of an analogue was studied, data were only extracted for the formulation corresponding to the one marketed in Canada.

6.4.3 Handling of missing data

Where standard deviations (SD) were not reported in the RCT, they were calculated using standard formulae based on the available information [e.g., 95% confidence interval (CI) of treatment effect].²² Where there was insufficient information to calculate the SD for the mean value of a particular outcome, the SD at baseline was used. Authors were contacted for missing SD values in some instances. Imputation of SD values from similar studies was reserved for cases when none of these strategies was successful.

If the number of patients analyzed in each treatment arm was not reported, the number randomized was used. If the number randomized was also not reported, it was assumed that the total sample size was equally divided across treatment arms.

6.5 Data Analysis

Where appropriate, quantitative pooling of results through random-effects meta-analysis was conducted using Review Manager 4.2 to generate estimates of treatment effect. A brief description of the meta-analytic method used is provided in Appendix 5. Separate analyses were conducted for each of the following populations: gestational DM, pediatric type 1 DM, adult type 1 DM, pediatric type 2 DM, and adult type 2 DM.

6.5.1 Meta-analysis of continuous data

The effect of two or more treatments on a continuous outcome such as A1c, fasting plasma glucose (FPG), or body weight was reported in trials as one or both of mean values at endpoint and mean change from baseline to endpoint. According to the *Cochrane Handbook for Systematic Reviews of Interventions*,²³ the two measures are theoretically equivalent since, on average, baseline values across treatment arms in RCTs should be equal. In the event that some RCTs report mean values at endpoint and others changes from baseline, the *Handbook* indicates that both types of data can be included in the same meta-analysis, since they are both estimates of the same parameter.

For the meta-analysis of continuous outcomes, mean values at endpoint were pooled where reported or calculable; otherwise, mean change from baseline was used. Each meta-analysis, therefore, could contain both mean values at endpoint and mean changes from baseline.

6.5.2 Analysis of hypoglycemia outcomes

The definitions of severe, nocturnal, and overall hypoglycemia varied somewhat across studies. Most studies defined severe hypoglycemia as an event with characteristic hypoglycemic symptoms requiring assistance of another person, although some studies also required the presence of blood

glucose values below a certain threshold. Overall hypoglycemia was usually defined by either symptoms of hypoglycemia and/or blood glucose below a certain threshold. Nocturnal hypoglycemia included all hypoglycemic events occurring at night, although the specific time frame varied somewhat across studies.

Data for each type of hypoglycemia were pooled across studies despite differences in definition. Where significant statistical heterogeneity was observed, differences in hypoglycemia definition were considered as a possible explanatory factor. Hypoglycemia data were analyzed in two ways: relative risk and rate ratio. The relative risk (RR) is a measure of the probability of experiencing at least one hypoglycemic episode during the course of the trial. Frequency of episodes (i.e., number of episodes per patient per unit of time) was analyzed using the rate ratio, an outcome measurement often utilized to capture recurrent events.²³ The rate ratio was tabulated in Review Manager as a generic inverse outcome measure.²³

6.5.3 Handling of crossover RCTs

In the absence of reported carryover effects, data from crossover trials were combined with those from parallel trials in a single meta-analysis. Carryover effects occur when the treatment given in the first period has residual effects that confound the interpretation of results in the second period. Carryover effects in crossover trials can be analyzed by examining the possibility of a statistical interaction between treatment and period.²⁴ When a carryover effect was reported in a RCT for a particular outcome, these data were excluded from meta-analysis.

6.5.4 Subgroup analysis

Subgroup analyses were performed to examine whether effect sizes differed by 1) the bolus insulin used in studies; 2) the intermediate or long-acting insulin used as a control (e.g., NPH or lente); or 3) for studies in which long-acting analogues were compared with OADs, the individual OAD used.

6.5.5 Sensitivity analysis

A number of sensitivity analyses were conducted to determine whether methodological differences between RCTs affected estimates of overall effect. Because Aic is a measure of long-term glycemic control,²⁵ trials of three months or less were excluded in sensitivity analysis for this outcome to determine the impact on the weighted mean difference. For all outcomes, crossover studies were removed in the sensitivity analysis to determine the impact on pooled estimates of effect. Where it was necessary to pool mean endpoint values and mean changes from baseline, a sensitivity analysis was conducted to determine the effect of removing the studies for which only mean changes from baseline were available. Although originally planned, sensitivity analyses based on quality assessment results were not conducted, because almost all included RCTs were of poor quality.

6.6 Study Quality Assessment

The accuracy of the inference of a systematic review is dependent on the validity of the primary studies included. Studies of low methodological quality have the potential to overestimate treatment benefits.^{26,27} Hence, an assessment of methodological quality is important. Methodological quality of included trials was assessed using a modified Jadad scale (Appendix 3).²⁸ The original Jadad scale was modified to record the extent of allocation concealment, blinding of assessors, and whether the study results were reported as an intention-to-treat analysis.²⁷ Since the same instrument was used for Technology Report 92,²⁰ quality assessment was not repeated for trials included in that review.

Two independent reviewers assessed the quality of trials. Discrepancies were discussed and resolved by consensus. Consensus results were checked against original articles by a third reviewer. Any discrepancies identified by the third reviewer were discussed with the original two reviewers until agreement was reached.

6.7 Heterogeneity

Heterogeneity was examined using the χ^2 and l^2 statistics. l^2 is a quantity that describes the degree of inconsistency across studies in a meta-analysis as a percentage. An l^2 of 50% is considered to represent moderate heterogeneity.²⁹ Therefore, for analyses with l^2 values of more than 50%, the following potential moderator variables were explored as possible causes for systematic bias: 1) bolus insulin or OAD; 2) baseline demographic characteristics (i.e., ethnicity, age, A1c, FPG, weight, BMI, severity or duration of DM, previous treatments); 3) target FPG; 4) dosing frequency (of both NPH and analogue); 5) study design (parallel versus crossover); 6) trial duration; and 7) publication type (abstract or full article).

6.8 Publication Bias

Trials with positive results tend to be published more frequently than those with negative or null results. In addition, outcomes with null or negative results may not be reported in published RCTs. These factors may result in the introduction of publication or reporting bias.⁸ The potential for such bias was explored through the use of funnel plots (i.e., a plot of effect size versus standard error) for meta-analyses containing more than five RCTs. Plots were examined visually for asymmetry, an indication of selective reporting.

7 RESULTS

7.1 Study Selection

Figure 1 shows the study selection process. A total of 940 citations were identified from the supplemental literature search for research questions 1, 2, 4, and 5 and the additional search for questions 3 and 6. Of these, 885 citations were excluded based on titles and/or abstracts. These consisted mainly of non-RCT articles such as reviews, pre-clinical studies, pharmacokinetic/ pharmacodynamic studies, and studies with comparisons not relevant for our review. Of the 55 potentially relevant citations selected for assessment of full-text reports, 24 were included. Reasons for exclusion are reported in Appendix 6. One full-text article was received from an author contacted for missing information in an abstract. This article replaced the abstract. As well, one additional RCT and an erratum pertaining to one of the selected articles were identified by stakeholders. Therefore, a total of 26 articles were identified during the updating process. Four of these articles were found to be full-text publications of abstracts included in the previous CADTH report.²⁰ Data from each of three RCTs were reported in two separate publications, while data from one RCT were reported in three abstracts; because the various reports contained information on different outcomes, they were all included in the review. The combined total number of selections from the updating process and studies selected in the technology report²⁰ was 58. These 58 articles represented 52 unique RCTs. Fortythree reports were full-text articles and the remaining were conference abstracts.

The literature search for observational studies identified 242 articles for potential inclusion in the meta-analyses. However, none of these studies satisfied inclusion and exclusion critieria.

* 36 studies were included in Technology Report 92,²⁰ but 4 abstracts were replaced by full-text publications identified during update. DM=diabetes mellitus; RCTs=randomized controlled trials.

7.2 Study Characteristics

Of the 52 unique RCTs selected for inclusion, 32 were on type 1 DM (including both pediatric and adult populations) and 20 were on adult type 2 DM patients. No RCTs pertaining to long-acting insulin analogues in gestational DM or pediatric type 2 DM were identified. Trial and patient characteristics for all included studies are shown in Appendix 7a and 7b (for type 1 and type 2 DM, respectively), and patient inclusion/exclusion criteria from each study are presented in Appendix 8.

7.2.1 Trials in type 1 DM

a) Pediatric population

Seven articles,³⁰⁻³⁶ each reporting the results of an unique RCT, were on type 1 pediatric patients. Of the seven RCTs, one study enrolled pre-adolescents (mean age 10.4 years),³⁵ three enrolled adolescents (mean age 13.2 to 14.8 years),^{33,34,36} and three enrolled both children and adolescents (mean age 11.7 to 11.9 years).³⁰⁻³² Three of the seven studies were full-text articles,^{30,32,36} and four were conference abstracts.^{31,33-35} Three studies mentioned industry sponsorship.^{32,37,38} One RCT³⁰ compared IDet with NPH, three compared IGlar with NPH,^{31,32,35} two were on IGlar versus NPH or lente,^{33,34} and one was on the combination of IGlar with lispro versus NPH with HI.³⁶ There were four parallel trials^{30,32-34} and three crossover trials.^{31,35,36} Sample sizes ranged between 14 and 361. Two trials were conducted in USA, one in UK, one in Poland, one in Japan, and two were multi-national. Five RCTs^{30,32,33,35,36} reported the duration of the diabetes; mean duration ranged between 1.8 and 15 years.

b) Adult population

Twenty-seven articles on adult type 1 DM were identified.³⁹⁻⁶⁵ Of these, 22^{39-46,48,49,52,54-60,63-65} were full-text articles, and five^{47,50,51,53,63} were conference abstracts. Twenty-one ^{39-46,48,49,52,54-60,63-65} mentioned industry sponsorship. Twenty two articles reported the results of parallel trials^{40-42,44-49,51-63} and five those of crossover trials.^{39,43,50,64,65} Twenty of the trials were multi-centre and 11 of were also multi-national. Two articles ^{47,54} were subgroup analyses of other studies ^{45,66} therefore the 27 articles included for adult type 1 diabetics represented 25 unique RCTs. Sample sizes ranged from 14 and 749. Fourteen RCT reports⁵⁰⁻⁶³ compared IGlar with NPH, nine³⁹⁻⁴⁷ compared IDet with NPH and HI, one⁶⁴ compared the combination of IGlar and ILis with NPH and HI, and one compared IGlar versus ultralente.⁶⁵

The mean age of patients in the included studies ranged from 23.8 to 43 years. The proportion of patients who were female ranged from 18% to 61%. Five articles did not report this information. The mean duration of diabetes ranged from 9.8 to 18.6 years. Two studies did not report this information.

c) Sub-populations

Other than children, the RCTs identified did not assess the efficacy of the long-acting analogues in sub-populations relevant to diabetes treatment in Canada, such as elderly or aboriginal populations. In terms of ethnic minorities, the study by Kawamura *et al.*³¹ was conducted in Japanese children. There were insufficient data to determine whether treatment response in this population differed from overall treatment effects observed across all studies.

7.2.2 Trials in type 2 DM

Twenty four articles⁶⁸⁻⁹¹ and one erratum ⁹² describing 20 RCTs in adult type 2 diabetics were selected. Of the 24 articles, 18^{68-71,74-84,88-90} were full-text articles, and six^{72,73,85-87,91} were conference abstracts. Three abstracts⁸⁵⁻⁸⁷ contained data from the same RCT, two full-text articles^{88,90} described a single trial, and one article⁷⁵ reported a subgroup analysis of another RCT.⁷⁴ Therefore, the 24 articles included represented 20 unique RCTs. Eighteen articles^{68-71,75-78,80-84,86-90} mentioned industry sponsorship. One RCT⁶⁸ compared IDet with NPH in patients also using bolus insulins. Three RCTs^{69,70,91} compared IDet with NPH in patients also using OADs. One RCT⁷¹ was on IDet in combination with aspart versus NPH and HI. One RCT compared IDet with IGlar in patients also using bolus insulins. Nine articles^{77-84,93} were on IGlar versus NPH with OAD as co-therapy. Six articles⁸⁵⁻⁹⁰ describing three RCTs reported the comparison of IGlar with thiazolidinediones (TZDs) as add-on therapy in patients inadequately controlled on sulfonylureas and metformin. All studies were of parallel design. Sample sizes ranged from 20 to 756. Among trials reporting information on centre, only one was of single-centre design. Two^{83,94} of the 23 trials had a duration of less than three months.

Mean age ranged between 53 and 61.3 years. The percentage of females ranged between 33.3% and 57.1%. Three studies did not report this information. The mean duration of diabetes ranged between 8.1 and 14.5 years. Seven articles did not report this information.

Sub-populations

The RCTs identified did not assess the efficacy of the long-acting analogues in sub-populations relevant to diabetes treatment in Canada, such as elderly or aboriginal populations. In terms of ethnic minorities, three studies were conducted in Asian countries (one in China,⁷⁹ a second in Japan⁹¹, and a third in various Asian countries⁷⁶). One study was conducted in a Latin American population.⁷⁷ There were insufficient data to determine whether treatment response in these populations differed from overall treatment effects observed across all studies.

7.3 Study Quality

We assessed the quality of all 43 full-text publications. For the 25 RCTs conducted in type 1 DM patients, $3^{0}3^{2}3^{6}3^{9}4^{6}4^{8}4^{9}5^{2}5^{4}6^{2}6^{4}6^{5}}$ the mean Jadad score (±SD) was 2.24±0.56. Allocation concealment was adequate in one trial 64 and unclear in the remainder. Sixty-four per cent of trials reported an intention-to-treat (ITT) analysis, 24% did not report an ITT analysis, and 12% did not report enough information to determine whether an ITT analysis was conducted. For the 18 trials conducted in type 2 DM patients, $^{68-71.74-84,88-90}$ the mean Jadad score (±SD) was 2.06±0.7. Allocation concealment was adequate in two studies $^{69.70}$ and unclear in the remainder. Eighty-three per cent of trials reported an ITT analysis, 11% did not report an ITT analysis, and 6% did not report enough information to determine whether an ITT analysis was conducted. Although it was originally intended that study quality would be used as a parameter for sensitivity analyses, this was not done, since nearly all trials were of low quality. The results of quality assessment for all studies are summarized in Appendix 9.

Hypoglycemia was categorized in various ways in different trials. Most trials reported severe (or major), nocturnal, and overall hypoglycemia. The definitions of hypoglycemia used in each trial are presented in Appendix 10a and 10b (for type 1 and type 2 DM, respectively).

7.4 Results of Meta-analysis

7.4.1 Pediatric type 1 DM

a) Glycosylated hemoglobin (A1c)

Study-level A1c data for type 1 DM are shown in Appendix 11a. All A1c data are expressed as percentages. Meta-analytic results for each comparison are presented in Table 1.

 Table 1: Summary of results of meta-analyses for comparison of long-acting insulin analogues versus NPH or lente insulin in pediatric type 1 DM – Overall results and subgroup analyses for mean A1c (%)

Comparison	Analysis	Number of RCTs	Sample Size	WMD (95% Cl)* in A1c (%)	l² (%)			
Glargine vs. NPH (with	All RCTs	4	680	-0.25 (-0.55, 0.05)	61.8			
bolus insulin)	Subgroup analysis							
	Bolus=IAsp	1	128	-0.70 (-1.12, -0.28)	NA			
	Bolus=ILis or HI	1	28	-0.10 (-0.77, 0.57)	NA			
	Bolus=HI	1	349	-0.22 (-0.53, 0.09)	NA			
	NPH or lente used in	1	175	-0.01 (-0.26, 0.24)	NA			
Glargine+lispro vs. NPH+HI	All RCTs	1	50	-0.40 (-0.91, 0.11)	NA			
Detemir vs. NPH (with aspart as co-therapy)	All RCTs	1	347	0.1 (-0.1, 0.3)	NA			

* Negative values indicate benefit with long-acting insulin analogue. A1c=glycosylated hemoglobin; CI=confidence interval; DM=diabetes mellitus; HI=human insulin; IAsp=insulin aspart; ILis=insulin lispro; NA=not applicable; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; vs=versus; WMD=weighted mean difference.

Glargine versus NPH

Five RCTs³¹⁻³⁵ comparing IGlar with NPH were identified in this review, four of which^{31-33,35} reported A1c results. Overall, there was no statistically significant difference between IGlar and NPH (Figure 2) [WMD (95% CI)=-0.25% (-0.55, 0.05)]. I² was 59.9% in this meta-analysis. The I² value was reduced to 49.2% once the Chase *et al.*, 2006 study, the only one to allow both NPH and lente in the control arm,³³ was removed from the analysis. The study by Kawamura *et al.* reported the largest treatment effect and was the only study to demonstrate a statistically significant difference.³¹ This study was dissimilar to the other three in that it used aspart as bolus insulin, was conducted in a Japanese population, and included subjects as old as 21 years of age.

Figure 2: Forest plot of all RCTs that examined the use of IGlar versus NPH for the treatment of type 1 DM in pediatric patients – A1c, weighted mean difference

Study or sub-category	N	Glar Mean (SD)	N	NPH Mean (SD)		VVMD 9	(random) 5% Cl	Weight %	VMMD (random) 95% Cl
Schober 2002	174	8.86(1.45)	175	9.08(1.46)			-	30.18	-0.22 [-0.53, 0.09]
Kawamura 2005	64	7.50(1.10)	64	8.20(1.30)		-	-	23.75	-0.70 [-1.12, -0.28]
Chase 2006	85	7.88(0.92)	90	7.89(0.92)			÷	32.21	-0.01 [-0.28, 0.26]
Mianowska 2006	14	7.60(0.90)	14	7.70(0.90)		-	+	13.86	-0.10 [-0.77, 0.57]
Total (95% Cl)	337		343				•	100.00	-0.25 [-0.55, 0.05]
Test for heterogeneity: Chi	² = 7.47, df = 3 (P =	: 0.06), l² = 59.9%					•		. , .
Test for overall effect: Z =	1.63 (P = 0.10)								
					-4	-2	0 2	4	
					F	Favours Gla	r Eavours NPE	1	

Atc=glycosylated hemoglobin; CI=confidence interval; DM=diabetes mellitus; IGIar/GIar=insulin glargine; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; SD=standard deviation; WMD=weighted mean difference.

IGlar+lispro versus NPH+human insulin

One study³⁶ reported the mean difference in A1c at endpoint [mean difference (95% CI)=-0.4% (-0.91, 0.11)].

IDet versus NPH

Only one RCT³⁰ comparing IDet with NPH (and IAsp as bolus insulin in both arms) was identified [mean difference (95% CI)=0.10% (-0.1, 0.3)].

In summary, there was no statistically significant difference between long-acting insulin analogues and NPH insulin in terms of A1c in children or adolescents with type 1 DM.

b) Two-hour post-prandial plasma glucose

No studies reported data on this outcome.

c) Hypoglycemia

Study-level hypoglycemia data are shown in Appendix 10a. Overall pooled results and results from subgroup analyses are summarized in Tables 2 to 4.

IGlar versus NPH

Four³²⁻³⁵ RCTs reported data on severe hypoglycemia, one³² reported nocturnal hypoglycemia, and three reported overall hypoglycemia.³²⁻³⁴ Results of meta-analysis are reported in Table 2. No significant differences were observed in terms of RR for severe (Figure 3), nocturnal, and overall hypoglycemia (Figure 4). The data necessary to calculate rate ratios were not reported in studies.

IGlar+lispro versus NPH+human insulin

Hypoglycemia results for this outcome are presented in Table 3. One study³⁶ included severe hypoglycemia as an outcome; however, no such events occurred, therefore RR was not calculable. In the same RCT, the RR of nocturnal hypoglycemia was statistically non-significant [RR (95% CI)=0.57 (0.29, 1.12)], as was the rate ratio. Data on overall hypoglycemia were not reported.
Table 2: Summary of results of meta-analyses for comparison of IGIar versus NPH for the treatment of
pediatric type 1 DM – Hypoglycemia relative risks

Type of Hypoglycemia	Analysis	No. of RCTs	Sample Size	RR* (95% CI)	l² (%)				
Severe	All RCTs	4	727	1.18 (0.59, 2.35)	48				
	Subgroup analysis								
	Bolus=ILis or HI	1	28	Not estimable	NA				
	Bolus=HI	1	349 0.80 (0.56, 1.18)		NA				
	NPH or lente used in control arm (Bolus=ILis)	2	350	1.91 (0.83, 4.42)	0				
Nocturnal	All RCTs (Bolus=HI)	1	349	0.71 (0.43, 1.18)	NA				
Overall	All RCTs	3	699	1.03 (0.86, 1.25)	18				
	Subgroup analysis								
	Subgroup C (HI=bolus)	1	349	1.01 (0.90, 1.12)	NA				
	NPH or lente used in control arm (Bolus=ILis)	2	350	1.23 (2.68, 2.23)	46.8				

* RRs less than 1 indicate benefit with analogue. CI=confidence interval; DM=diabetes mellitus; HI=human insulin; IGIar=insulin glargine; ILis=insulin lispro; NA=not applicable; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

Table 3: Summary of results for comparison of IGlar+lispro versus NPH+human insulin for the treatment of pediatric type 1 DM – Hypoglycemia relative risks and rate ratios

Type of Hypoglycemia	No. of RCTs	Sample Size	RR (95% CI)	Rate Ratio (95% CI)
Severe	1	50	Not estimable	NA
Nocturnal	1	50	0.57 (0.29, 1.12)	0.71 (0.44, 1.14)
Overall	0	NA	NA	NA

CI=confidence interval; DM=diabetes mellitus; IGIar=insulin glargine; NA=not applicable; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

Table 4: Summary of results for comparison of IDet versus NPH (with aspart as bolus therapy) for the treatment of pediatric type 1 DM – Hypoglycemia relative risks and rate ratios

Type of Hypoglycemia	No. of RCTs	Sample Size	RR (95% CI)	Rate Ratio (95% Cl)
Severe	1	347	0.80 (0.5, 1.28)	0.94 (0.68, 1.3)
Nocturnal	1	347	0.85 (0.77, 0.94)	0.77 (0.7, 0.84)
Overall	1	347	0.98 (0.94, 1.01)	0.89 (0.86, 0.93)

CI=confidence interval; DM=diabetes mellitus; IDet=insulin detemir; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

Figure 3: Forest plot of all RCTs that examined the use of IGlar versus NPH for the treatment of pediatric type 1 DM patients – Relative risk of severe hypoglycemia

Study or sub-category	Glar n/N	NPH n/N	RR (random) 95% Cl	Weight %	RR (random) 95% Cl
Schober 2002	40/174	50/175	_ _	55.35	0.80 [0.56, 1.15]
Chase 2006	9/85	4/90		23.44	2.38 [0.76, 7.45]
Mianowska 2006	0/14	0/14			Not estimable
White 2006	6/88	4/87		- 21.21	1.48 [0.43, 5.07]
Total (95% CI)	361	366		100.00	1.18 [0.59, 2.35]
Total events: 55 (Glar), 58 (NPH)		-		
Test for heterogeneity: Chi2	=3.85, df=2 (P=0.15), l ² =48.	0%			
Test for overall effect: Z=0.4	47 (P=0.64)				
		C	.1 0.2 0.5 1 2 4 Favours Glar Favours NP	+ + 5 10 2H	

CI=confidence interval; DM=diabetes mellitus; Glar/IGlar=insulin glargine; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

Figure 4: Forest plot of all RCTs that examined the use of IGlar versus NPH for the treatment of pediatric type 1 DM patients – Relative risk of overall hypoglycemia

CI=confidence interval; DM=diabetes mellitus; Glar=insulin glargine; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

IDet versus NPH

Only one RCT³⁰ comparing IDet with NPH (and IAsp as bolus insulin in both arms) was identified. The relative risks and rate ratios for severe hypoglycemia, nocturnal hypoglycemia, and overall hypoglycemia are shown in Table 4. No significant differences were found in the risk or rate of severe hypoglycemia; IDet produced statistically favourable effects in both measures of nocturnal hypoglycemia. The rate ratio for overall hypoglycemia was also significantly reduced, but there was no statistically significant difference in terms of relative risk.

d) Body mass index

The available BMI data are summarized in Appendix 12a. One RCT³⁵ reported that there was no significant difference in mean BMI between IGlar and NPH (Table 5). Another RCT³⁰ comparing IDet and NPH reported body mass index Z-score. The difference in BMI Z-score was statistically significant in favour of IDet in this trial. In the RCT³⁶ comparing IGlar+lispro with NPH+HI, no BMI information was provided, but it was reported that there was no difference in body weight at the endpoint between treatments.

Table 5: Summary of results for comparison of long-acting insulin analogues with NPH in pediatric type 1 DM – Mean BMI

Comparison	Bolus Insulin	No. of Trials	Sample Size	Mean Difference (95% Cl)
IGlar vs. NPH	ILis or HI	1	28	0.2 (-0.03, 0.43) kg/m²
IDet vs. NPH	IAsp	1	347	-0.18 (-0.25, -0.11) (Z-score)

BMI=body mass index; CI=confidence interval; DM=diabetes mellitus; HI=human insulin; IAsp=insulin aspart; IDet= insulin detemir; ILis=insulin lispro; IGIar=insulin glargine; NPH=neutral protamine Hagedorn; vs.=versus.

e) Diabetic ketoacidosis

Study-level data on diabetic ketoacidosis (DKA) are presented with adverse event data in Appendix 13a. Two RCTs reported DKA for the comparison of IGIar versus NPH; very low or zero event rates occurred in one or more arms, therefore RR could not be precisely estimated. Another RCT³⁰ reported DKA for the comparison of IDet versus NPH. Once again, event rates were very low, and no significant differences were observed. DKA data were not reported for the comparison of IGIar+lispro with NPH+HI. A summary of RRs for DKA is shown in Table 6.

Table 6: Summary of results for comparison of long-acting insulin analogues with NPH in pediatric type 1DM – RR of diabetic ketoacidosis

Comparison	Bolus Insulin	Number of RCTs	Number of Patients	RR (95% CI)	l² (%)
IGlar vs. NPH	ILis or HI	2	376	3 (0.12, 73.13)	NA*
IDet vs. NPH	lAsp	1	347	0.99 (0.18, 5.33)	NA

* One of the two studies had zero event rates in both treatment arms, therefore only one study contributed to the estimate of RR. DM=diabetes mellitus; HI=human insulin; IAsp=insulin aspart; ILis=insulin lispro; IGIar=insulin glargine; IDet=insulin detemir; NA=not applicable; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk; vs.=versus.

f) Generic or diabetes-related quality-of-life

No trials reported quality-of-life data.

g) Satisfaction with diabetes treatment

No trials reported data on patient satisfaction.

h) Patient self-management

No trials reported data on patient self-management.

i) Resource utilization

No trials reported data on resource utilization.

j) Long-term diabetic complications

No data were reported for long-term diabetes complications such as retinopathy, cardiovascular disease, or mortality.

k) Adverse events (excluding hypoglycemia)

Adverse events (AEs) observed in each study are detailed in Appendix 13a. Five (71%) RCTs reported AEs. The most frequent AEs in both groups were injection site reactions, upper respiratory tract infection, headache, pharygitis, gastroenteritis, and influenza-like symptoms. Injection site reactions were the only AEs considered related to treatment. All injection site reactions were mild or moderate in severity and reversible.

7.4.2 Adult type 1 DM

a) Glycosylated hemoglobin

Study-level A1c data for adult type 1 DM patients are summarized in Appendix 11a. All A1c data are expressed as percentages. Meta-analytic results for each comparison are shown in Table 7.

 Table 7: Summary of results of meta-analyses for comparison of long-acting insulin analogues versus NPH insulin in adult type 1 DM – Overall results, subgroup analyses, and sensitivity analyses for mean A1c (%)

Comparison	Analysis	Number of RCTs	Sample Size	WMD (95% Cl) in A1c (%)	l² (%)			
IGlar vs. NPH	All RCTs	11	2,728	-0.11 (-0.21, -0.02)	38.8			
	Subgroup analysi	s by bolus in	sulin		1			
	Bolus=IAsp	2	147	-0.18 (-0.35, -0.01)	0			
	Bolus=HI	4	1,507	0.01 (-0.10, 0.13)	0			
	Bolus=ILis	5	1,074	-0.20 (-0.37, -0.03)	51.4			
	Sensitivity analys	is						
	Removal of RCTs	7	2,273	-0.10 (-0.20, 0.01)	40.0			
	≤3 months							
	duration							
	Removal of	10	2,614	-0.10 (-0.21, 0.01)	41.0			
	crossover RCTs							
IGlar vs. ultralente	All RCTs	1	48	-0.20 (-0.56, 0.16)	NA			
IDet vs. NPH	All RCTs	7	2,558	-0.06 (-0.13, 0.02)	0			
	Subgroup analysis by bolus insulin							
	Bolus=IAsp	5	1,523	-0.07 (-0.16, 0.03)	0			
	Bolus=HI	2	1,035	-0.02, (-0.22, 0.19)	46.3			
	Sensitivity Analysis							
	Removal of	6	2,301	-0.07 (-0.16, 0.02)	0			
	crossover							
	studies							
IDet +aspart vs.	All RCTs	1	595	-0.23 (-0.37, -0.09)	NA			
NPH+HI								
IDet vs. glargine	All RCTs (Bolus=IAsp)	1	320	-0.03 (-0.26, 0.2)	NA			

Atc=glycosylated hemoglobin; CI=confidence interval; DM=diabetes mellitus; HI=human insulin; IAsp=insulin aspart; IDet=insulin detemir; IGIar=insulin glargine; ILis=insulin lispro; NA=not applicable; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; vs.=versus; WMD=weighted mean difference.

IGlar versus NPH

Fourteen RCTs^{50-62,74} were identified for this comparison. Of these, 11 RCTs^{50-52,55-57,59-63} reported mean A1c at study end. Overall, the difference in mean A1c between IGlar and NPH was -0.11% (95% CI: -0.21, -0.02) (Figure 5). Of these 11 RCTs, four showed a statistically significant benefit in favour of IGlar,^{50,60-62} and none reported a significant benefit in favour of NPH. In sensitivity analysis, removal of studies of less than three months duration or of crossover studies did not have a significant benefit in favour of IGlar was observed in each of the rapid-acting analogue subgroups, but not in the HI subgroup.

Figure 5: Forest plot of all RCTs that examined the use IGlar versus NPH for the treatment of type 1 DM in adult patients – A1c, weighted mean difference

Study or sub-category	N	Glargine Mean (SD)	N	NPH Mean (SD)	VVMD (random) 95% Cl	Weight %	VMD (random) 95% Cl
Pieber 2000	110	7.85(1.05)	110	7.79(0.94)	+	8.89	0.06 [-0.20, 0.32]
Raskin 2000	310	7.53(1.19)	309	7.60(1.14)	4	13.29	-0.07 [-0.25, 0.11]
Ratner 2000	264	7.54(1.20)	270	7.49(1.10)	+	12.51	0.05 [-0.15, 0.25]
Rosenstock 2000	82	7.40(1.10)	86	7.60(1.20)		6.01	-0.20 [-0.55, 0.15]
Rossetti 2003	17	6.60(0.41)	17	7.00(0.41)	-	8.38	-0.40 [-0.68, -0.12]
Porcellati 2004	61	6.70(0.78)	60	7.10(0.77)	-	8.36	-0.40 [-0.68, -0.12]
Davies 2005	57	8.07(0.48)	57	8.26(0.48)	-	13.79	-0.19 [-0.37, -0.01]
Fulcher 2005	62	-0.89(1.14)	63	-0.67(1.14)		4.84	-0.22 [-0.62, 0.18]
Home 2005	292	8.11(1.20)	293	8.10(1.20)	+	12.57	0.01 [-0.18, 0.20]
Bolli 2006	85	7.30(0.70)	90	7.30(1.00)	+	9.28	0.00 [-0.25, 0.25]
Pesic 2006	18	6.90(0.50)	15	7.00(1.20)	-+-	2.08	-0.10 [-0.75, 0.55]
Total (95% CI)	1358		1370			100.00	-0.11 [-0.21, -0.02]
Test for heterogeneity: Ch Test for overall effect: Z =	² = 16.34, df = 10 2.29 (P = 0.02)	(P = 0.09), I ² = 38.8%					
					-4 -2 0 2	4	
					Favours Glargine Favours NPF	1	

Heterogeneity I² describes the heterogeneity among the included studies. A1c=glycosylated hemoglobin; CI=confidence interval; DM=diabetes mellitus; IGIar=insulin glargine; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; SD=standard deviation; WMD=weighted mean difference.

Heterogeneity (I²) of the overall pooled estimate wasless than 50%. In subgroup analyses, I² was 0% in both the HI and IAsp subgroups, and 51.4% in the ILis subgroup. Heterogeneity in the ILis subgroup was not readily explained by any of the study variables tested. The funnel plot for the overall meta-analysis did not indicate a high probability of publication bias (Appendix 14, Figure 1).

IGlar+lispro versus NPH+human insulin

A single RCT of crossover design⁷⁴ reported the mean difference in A1c for this comparison. Since the authors noted that a "marked sequence effect" was detected for the A1c outcome,⁷⁴ this result is not reported.

IGlar versus ultralente

The single study⁶⁵ that reported A1c data for this comparison found no significant difference between treatments. This study also reported a non-significant RR of achieving A1c≤7% [RR (95% Cl)=1.15 (0.71, 1.87)].

IDet versus NPH

Seven trials^{39-42,44-46} reported mean A1c differences between IDet and NPH. Five of these^{39-42,44} used IAsp as bolus and two^{45,46} used HI. The pooled estimate for all eight trials showed no statistically significant difference between treatments [WMD (95% CI)=-0.06% (-0.13, 0.02)] (Figure 6). Sensitivity analysis did not demonstrate an important effect of removing crossover studies from the analysis; no studies were less than three months in duration. Pooled A1c estimates within each of

the two bolus insulin subgroups were similar to the overall estimate and neither was statistically significant.

Study or sub-category	N	Detemir Mean (SD)	N	NPH Mean (SD)	VMMD (random) 95% Cl	Weight %	WMD (random) 95% Cl
Vague 2003	280	7.60(1.51)	139	7.64(1.18)		9.02	-0.04 [-0.30, 0.22]
Home 2004	139	7.78(0.83)	132	7.94(0.80)		16.71	-0.16 [-0.35, 0.03]
Russell-Jones 2004	491	8.30(1.08)	256	8.41(1.32)	— — — — —	17.84	-0.11 [-0.30, 0.08]
Standl 2004	154	7.88(1.02)	134	7.78(1.02)	_	11.28	0.10 [-0.14, 0.34]
De Leeuw 2005	216	7.53(1.47)	99	7.59(1.29)		6.11	-0.06 [-0.38, 0.26]
Pieber 2005	132	7.65(0.82)	129	7.73(0.80)	_	16.29	-0.08 [-0.28, 0.12]
Kolendorf 2006	127	7.60(0.68)	130	7.60(0.68)	-+-	22.76	0.00 [-0.17, 0.17]
Total (95% CI)	1539		1019		•	100.00	-0.06 [-0.13, 0.02]
Test for heterogeneity: Chi2	= 3.60, df = 6 (P =	= 0.73), l² = 0%			•		
Test for overall effect: Z = 1	.37 (P = 0.17)						
					-1 -0.5 0 0.5	1	
					Fourier Determine Fourier NDH		

Figure 6: Forest plot of all RCTs that examined the use of IDet versus NPH for the treatment of type 1 DM in adult patients – A1c, weighted mean difference

Atc=glycosylated hemoglobin; CI=confidence interval; DM=diabetes mellitus; IDet=insulin detemir; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; SD=standard deviation; WMD=weighted mean difference.

There was no heterogeneity across studies in either the overall analysis or within the IAsp subgroup $(I^2=0\%)$, while the human insulin subgroup demonstrated a moderate level of heterogeneity $(I^2=46\%)$. The likelihood of publication bias was minimal based on analysis of the funnel plot (Appendix 14, Figure 2).

IDet+aspart versus NPH+HI

Only Hermansen *et al.*⁴⁹ reported the comparison of IDet with IAsp as bolus insulin versus NPH with HI as bolus insulin. A statistically significant difference in mean A1c at endpoint was observed [mean difference (95% CI)=-0.23% (-0.37, -0.09)].

IDet versus IGlar

The single RCT comparing the two long-acting analogues used IAsp as bolus insulin in both treatment arms.⁴⁸ There was no statistically significant difference in mean A1c [mean difference (95% CI)=-0.03% (-0.26, 0.20)].

b) Two-hour post-prandial plasma glucose

No studies reported data on this outcome.

c) Hypoglycemia

Study-level hypoglycemia data for adult type 1 DM are presented in Appendix 10a. Hypoglycemia definitions are also shown in Appendix 10a. Results of meta-analysis for the various comparisons are presented in Tables 8 to 13.

IGlar versus NPH

The numbers of RCTs reporting the necessary data to calculate relative risk of experiencing at least one episode of severe, nocturnal, and overall hypoglycemia were 7,^{50,52,56,59,61,62,95} 5,^{52,54,55,59,60} and 6,^{50,54,55,57,59,60} respectively. The numbers of RCTs that reported data allowing for calculation of rate ratio for severe, nocturnal, and overall hypoglycemia were 5,^{50,56,59,60,63} 4,⁵⁹⁻⁶² and 2,^{59,62} respectively.

Pooled estimates of all trials revealed no statistically significant differences between treatments in terms of the RR or rate ratio for any of severe, nocturnal, and overall hypoglycemia (Table 8). The likelihood of publication bias was minimal based on funnel plot analysis (Appendix 14, Figures 3 to 5).

Table 8: Summary of results of meta-analyses for comparison of IGlar versus NPH in adulttype 1 DM – Overall results, subgroup analyses, and sensitivity analysesfor RR and rate ratio of severe, nocturnal, and overall hypoglycemia

Type of	Analysis	RR				Rate Ratio			
Hypo- glycemia		No. of RCTs	Sample Size	RR (95% CI)	² (%)	No. of RCTs	Sample Size	Rate Ratio (95% Cl)	² (%)
Severe	All RCTs	7	2,227	0.82 (0.52, 1.29)	33.0	5	1,559	0.89 (0.64, 1.23)	31.8
	Subgroup a	nalysis l	by bolus ins	ulin	•				<u>.</u>
	Bolus= IAsp	1	114	1.00 (0.06, 15.60)	NA	1	114	1.00 (0.06, 15.99)	NA
	Bolus=ILis	3	774	1.25 (0.66, 2.36)	NA	3	1,538	0.98 (0.73, 1.30)	19.6
	Bolus=HI	3	1,339	0.68 (0.37, 1.26)	42.6	1	534	0.47 (0.23, 0.96)	NA
	Sensitivity	analysis			•				
	Removal of crossover RCTs	6	2,113	0.81 (0.49, 1.36)	49. 6	4	1,445	0.88 (0.61, 1.28)	48.8
Nocturnal	All RCTs	5	1,943	0.97 (0.87, 1.09)	65.6	4	916	0.67 (0.37, 1.23)	99.2
	Subgroup a	analysis l	by bolus ins	ulin					
	Bolus=HI	3	1,199	0.91 (0.75, 1.12)	76.6	0	NA	NA	NA
	Bolus=ILis	2	744	1.02 (0.88, 1.19)	59.9	4	916	0.67 (0.37, 1.23)	99.2
Overall	All RCTs	6	2,007	1.02 (0.98, 1.07)	55.7	2	670	0.82 (0.52, 1.28)	98.4
	Subgroup a	analysis l	by bolus ins	ulin					
	Bolus= IAsp	1	114	1.05 (0.86, 1.26)	NA	0	NA	NA	NA
	Bolus=HI	3	1,149	1.00 (0.92, 1.10)	76.5	0	NA	NA	NA
	Bolus=ILis	2	744	1.03 (0.96, 1.10)	65.3	2	670	0.82 (0.52, 1.28)	98.4
	Sensitivity	analysis		·				·	<u>.</u>
	Removal of crossover RCTs	5	1,893	1.02 (0.97, 1.07)	65.2	2	670	0.82 (0.52, 1.28)	98.4

CI=confidence interval; DM=diabetes mellitus; HI=human insulin; IAsp=insulin aspart; IGlar=insulin glargine; ILis=insulin lispro; NA=not applicable; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

Severe hypoglycemia: For severe hypoglycemia, the overall pooled RR (95% CI) was 0.82 (0.52, 1.29) (Figure 7). Only one⁵⁶ of the seven RCTs reported a statistically significant benefit for IGIar compared with NPH. Pooled analysis for all three subgroups based on bolus insulin revealed non-significant RRs. Removal of the single crossover study in sensitivity analysis did not have a large impact on the overall result. The overall pooled rate ratio (95% CI) for severe hypoglycemia was 0.89 (0.64, 1.23) (Figure 8). The only significant difference in subgroup analysis based on bolus insulin was for HI, in which the single available study demonstrated a rate ratio of 0.47 (0.23, 0.96). Removal of the single crossover study in sensitivity analysis did not have a large impact on the overall rate ratio.

There was minimal heterogeneity for this outcome (I^2 values were 33% and 32% for the RR and rate ratio.

Figure 7: Forest plot of all RCTs that examined the use of IGlar versus NPH for the treatment of type 1 DM in adult patients – RR of severe hypoglycemia

Heterogeneity I² describes the heterogeneity among the included studies. CI=confidence interval; DM=diabetes mellitus; IGIar=insulin glargine; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

Figure 8: Forest plot of all RCTs that examined the use of IGlar versus NPH for the treatment of type 1 DM in adult patients – Rate ratio of severe hypoglycemia

Study or sub-category	log[Rate Ratio] (SE)	Rate Ratio (random) 95% Cl	Weight %	Rate Ratio (random) 95% Cl
Raskin 2000	0.3683 (0.2907)	-	21.66	1.45 [0.82, 2.56]
Ratner 2000	-0.7485 (0.3609)		15.96	0.47 [0.23, 0.96]
Davies 2005	0.0000 (1.4142)	+	1.36	1.00 [0.06, 15.99]
Fulcher 2005	-0.1292 (0.1283)		46.22	0.88 [0.68, 1.13]
Bolli 2006	-0.1252 (0.3792)	+	14.81	0.88 [0.42, 1.86]
Total (95% CI) Test for heterogeneity: C Test for overall effect: Z =	hi² = 5.86, df = 4 (P = 0.21), l² = 31.8% = 0.71 (P = 0.48)	•	100.00	0.89 [0.64, 1.23]
	0.001 (Fav	D.01 0.1 1 10 100 0.01 0.1 Favors HPN	0 1000	

Heterogeneity I² describes the heterogeneity among the included studies. CI=confidence interval; DM=diabetes mellitus; IGIar=insulin glargine; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk; SE=standard error.

Nocturnal hypoglycemia: There was no significant difference between treatments in terms of the pooled RR of nocturnal hypoglycemia (Figure 9). Only one RCT⁵² showed a statistically significant reduction in favour of IGlar. The subgroup and sensitivity analyses also demonstrated RRs of nearly 1 that were non-significant. There was also no significant difference in nocturnal hypoglycemia rate ratio (Figure 10). No sensitivity or subgroup analyses were conducted for the rate ratio, since all four studies were of parallel design and used ILis as bolus insulin.

Figure 9: Forest plot of all RCTs that examined the use of IGlar versus NPH for the treatment of type 1 DM in adult patients – RR of nocturnal hypoglycemia: Events

Study or sub-category	Glargine n/N	NPH n/N	RR (random) 95% Cl	Weight %	RR (random) 95% Cl
Pieber 2000	39/110	61/110		9.87	0.64 [0.47, 0.87]
Raskin 2000	214/310	195/309	l _	24.49	1.09 [0.98, 1.23]
Hershon 2004	139/195	138/199	+	22.92	1.03 [0.90, 1.17]
Fulcher 2005	50/62	54/63	-	19.92	0.94 [0.80, 1.10]
Home 2005	178/292	179/293	+	22.80	1.00 [0.88, 1.14]
Total (95% Cl)	969	974	•	100.00	0.97 [0.87, 1.09]
Total events: 620 (Glargine), 627 (NPH)		1		
Test for heterogeneity: Chi ²	² = 11.63, df = 4 (P = 0.02), l ² = 1	65.6%			
Test for overall effect: Z =	0.49 (P = 0.62)				
			0.2 0.5 1 2	5	
			Fouciero Clargino - Fouciero NE	L .	

Heterogeneity I² describes the heterogeneity among the included studies. CI=confidence interval; DM=diabetes mellitus; IGIar=insulin glargine; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

Figure 10: Forest plot of all RCTs that examined the use of insulin glargine versus NPH for the treatment of type 1 DM in adult patients – Rate ratio of nocturnal hypoglycemia

Study or sub-category	log[Rate Ratio] (SE)	Rate Ratio (random) 95% Cl	Weight %	Rate Ratio (random) 95% Cl
Raskin 2000	0.1128 (0.0437)		25.17	1.12 [1.03, 1.22]
Rossetti 2003	-0.6657 (0.1073)	-	24.55	0.51 [0.42, 0.63]
Porcellati 2004	-0.9808 (0.0394)		25.20	0.38 [0.35, 0.41]
Fulcher 2005	-0.0521 (0.0575)	+	25.08	0.95 [0.85, 1.06]
Total (95% CI)		•	100.00	0.67 [0.37, 1.23]
Test for heterogeneity:	Chi ² = 397.39, df = 3 (P < 0.00001), I	² = 99.2%		
Test for overall effect: Z	= 1.28 (P = 0.20)			
	0.001	0.01 0.1 1 10 100	1000	
	Fa	vours Glargine Favours NPH		

Heterogeneity I² describes the heterogeneity among the included studies. CI=confidence interval; DM=diabetes mellitus; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; SE=standard error.

There was a high degree of heterogeneity in terms of both the RR and rate ratio (l²=65.6% and 99%, respectively). In the HI subgroup, the l² for RR was 76.6%. At least some of this heterogeneity may have been due to inclusion of studies of varying duration, since removal of the Pieber *et al.*, 2000⁵² study, a four-week trial, reduced the l² to 0%. In the ILis subgroup, the l² was 59.9%. Of the two studies included in this subgroup, the Raskin *et al.*, 2000 study⁵⁹ had a wider target FPG range than the Fulcher *et al.*, 2005⁶⁰ study. This difference may have contributed to the high degree of heterogeneity.

Overall hypoglycemia: For overall hypoglycemia, the overall RR was nearly 1 and not statistically significant (Figure 11). The overall rate ratio was also not significantly different from 1 (Figure 12). Similar results were obtained in subgroup and sensitivity analyses.

Figure 11: Forest plot of all RCTs that examined the use of IGlar versus NPH for the treatment of type 1 DM in adult patients – RR of overall hypoglycemia: Events

Study	Glargine	NPH		R	R (random)	1	Weight	RR (random)
or sub-category	n/N	n/N	95% CI				%	95% Cl
Raskin 2000	281/310	280/309			+		23.37	1.00 [0.95, 1.05]
Rosenstock 2000	80/82	82/88					19.54	1.05 [0.98, 1.12]
Hershon 2004	143/195	163/199		-	-		11.88	0.90 [0.80, 1.00]
Davies 2005	46/57	44/57				-	5.03	1.05 [0.86, 1.26]
Fulcher 2005	62/62	59/63					19.96	1.07 [1.00, 1.14]
Home 2005	260/292	248/293			-		20.22	1.05 [0.99, 1.12]
Total (95% CI)	998	1009			•		100.00	1.02 [0.98, 1.07]
Total events: 872 (Glargine)	, 876 (NPH)							
Test for heterogeneity: Chi ²	= 11.29, df = 5 (P = 0.05), l² =	55.7%						
Test for overall effect: Z = 0	.91 (P = 0.36)							
			0.5	0.7	1	1.5	2	
			-		. –			

Favours Glargine Favours NPH

Heterogeneity I² describes the heterogeneity among the included studies. CI=confidence interval; DM=diabetes mellitus; IGIar=insulin glargine; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

Figure 12: Forest plot of all RCTs that examined the use of IGlar versus NPH for the treatment of type 1 DM in adult patients – Rate ratio of overall hypoglycemia

Study or sub-category	log[Rate Ratio] (SE)	Rate Ratio (random) 95% Cl	Weight %	Rate Ratio (random) 95% Cl						
Raskin 2000	0.0230 (0.0192)		50.64	1.02 [0.99, 1.06]						
Rossetti 2003	-0.4346 (0.0552)	=	49.36	0.65 [0.58, 0.72]						
Total (95% CI) Test for heterogenei Test for overall effec	Total (95% CI) 0.82 [0.52, 1.28] Test for heterogeneity: Chi ² = 61.30, df = 1 (P < 0.00001), I ² = 98.4% Test for overall effect: Z = 0.89 (P = 0.38)									
	0.001	0.01 0.1 1 10 100	1000							
	Favou	rs Glargine Favours NF	ч							

Heterogeneity I² describes the heterogeneity among the included studies. CI=confidence interval; DM=diabetes mellitus; IGlar=insulin glargine; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; SE=standard error.

For RR, the degree of heterogeneity (I²) among all trials was 55.7%. Within the ILis subgroup, the Raskin *et al.*, 2000 study⁵⁹ had a wider target FPG range than that of Fulcher *et al.*, 2005;⁶⁰ this may at least partially explain the degree of heterogeneity. In the HI subgroup, differences in dosing frequency may have resulted in heterogeneity since the Hershon *et al.*, 2004⁵⁴ trial dosed NPH twice daily, while others allowed either once or twice daily dosing.^{55,57} Removal of the Hershon study reduced the I² to 0%. The I² value among the two studies contributing to the pooled rate ratio was 98.4%. The rate ratio for the Rossetti study was 0.65 and statistically significant,⁶² while that of Raskin was nearly 1 and non-significant.⁵⁹ It is possible that the former result was due to chance, especially in light of the small sample size of the Rossetti study.

IGlar+lispro versus NPH+human insulin

Only one RCT⁶⁴ was identified for this comparison. There was no significant difference between treatments in terms of the RR of severe and nocturnal hypoglycemia (Table 9). However, a statistically significant difference in terms of nocturnal hypoglycemia rate ratio was observed [rate ratio (95% CI)=0.56 (0.48, 0.65)]. The data required to calculate the RR and rate ratio of overall hypoglycemia, and rate ratio of severe hypoglycemia, were not reported in the study.

Table 9: Summary of results for comparison of IGlar+lispro versus NPH+human insulin in adult type 1 DM:RR and rate ratio of severe, nocturnal, and overall hypoglycemia

Type of	RR			Rate Ratio			
Hypoglycemia	No. of RCTs	Sample Size	RR (95% CI)	No. of RCTs	Sample Size	Rate Ratio (95% CI)	
Severe	1	108	0.88 (0.48, 1.61)	0	NA	NA	
Nocturnal	1	108	0.88 (0.71, 1.10)	1	108	0.56 (0.48, 0.65)	
Overall	0	NA	NA	0	NA	NA	

DM=diabetes mellitus; IGIar=insulin glargine; NA=not applicable; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

IGlar versus ultralente

The single study available for this comparison⁶⁵ reported sufficient data to calculate the rate ratios of severe, nocturnal, and overall hypoglycemia (Table 10). There was no significant difference between treatments in terms of severe hypoglycemia, ultralente was significantly favoured in terms of nocturnal hypoglycemia, and IGIar was significantly favoured in terms of overall hypoglycemia. RRs could not be calculated due to lack of data.

Table 10: Summary of results for comparison of IGlar versus ultralente in adult type 1 DM –Rate ratio of severe, nocturnal, and overall hypoglycemia

Type of Hypoglycemia	No. of RCTs	Sample Size	Rate Ratio (95% CI)
Severe	1	48	1.00 (0.17, 5.98)
Nocturnal	1	48	1.70 (1.10, 2.63)
Overall	1	48	0.78 (0.67, 0.91)

CI=confidence interval; DM=diabetes mellitus; IGIar=insulin glargine; RCTs=randomized controlled trials.

IDet versus NPH

The numbers of RCTs reporting sufficient data to calculate the RR of severe, nocturnal, and overall hypoglycemia were 7,⁴⁰⁻⁴⁶ 7,^{39,40,42,44-47} and 6,^{39,42-46} respectively. The numbers of RCTs reporting sufficient data to calculate the rate ratio of severe, nocturnal, and overall hypoglycemia were 7,^{39,41-46} 9,³⁹⁻⁴⁷ and 6,^{39,42-46} respectively. Results of meta-analysis are presented in Table 11.

Severe hypoglycemia: For severe hypoglycemia, the pooled relative risk was statistically significant in favour of IDet [RR (95% CI)=0.74 (0.58, 0.96)] (Figure 13, Table 11). Of the seven RCTs in this analysis, only one⁴⁴ reported a statistically significant benefit compared with NPH. The RR estimate in each of the HI and IAsp bolus insulin groups was of a similar magnitude as the overall result, however, the result was statistically non-significant for HI. No studies used ILis as bolus insulin. Removal of the single crossover study did not have an appreciable effect on the overall pooled estimate. There was no significant difference in terms of the overall pooled rate ratio (Figure 14). Similar results were obtained for the HI and IAsp bolus insulin subgroups and when the single crossover study was removed from analysis.

Table 11: Summary of results of meta-analyses for comparison of IDet versus NPH inadult type 1 DM – Overall results, subgroup analyses, and sensitivity analysesfor RR and rate ratio of severe, nocturnal, and overall hypoglycemia

Type of	Analysis	RR	RR				atio				
Hypo- glycemia		No. of RCTs	Sample Size	RR (95% CI)	l² (%)	No. of RCTs	Sample Size	Rate Ratio (95% CI)	² (%)		
Severe	All RCTs	7	2,442	0.74 (0.58, 0.96)	0	7	2,442	0.95 (0.65, 1.38)	62.3		
	Subgroup analysis by bolus insulin										
	Bolus= IAsp	4	1,294	0.69 (0.50, 0.96)	0	4	1,247	0.90 (0.52, 1.53)	64		
	Bolus=HI	3	1,148	0.83 (0.56, 1.22)	0	3	1,097	1.02(0.57, 1.82)	60.2		
	Sensitivity an	alysis		•							
	Removal of crossover studies	6	2,329	0.75 (0.58, 0.98)	0	5	2,014	1.14 (0.77, 1.70)	58.7		
Nocturnal	All RCTs	6	2,311	0.92 (0.85, 0.98)	32.2	8	2,695	0.66 (0.60, 0.73)	78.3		
	Subgroup and	alysis by l	bolus insulin								
	Bolus= IAsp	4	1,276	0.87 (0.78, 0.97)	49.8	5	1,547	0.63(0.54, 0.72)	80.1		
	Bolus=HI	2	1,035	0.97 (0.89, 1.06)	0	3	1,148	0.74 (0.69, 0.78)	0		
	Sensitivity Ar	nalysis					ł				
	Removal of crossover studies	5	2,058	0.94 (0.89, 0.99)	0	6	2,329	0.69 (0.64, 0.75)	70.5		
Overall	All RCTs	6	2,110	1.00 (0.96, 1.04)	30.8	6	2,109	0.84 (0.74, 0.97)	97.8		
	Subgroup and	alysis by l	bolus insulin								
	Bolus= IAsp	3	961	0.97 (0.92, 1.02)	29.6	3	961	0.90 (0.73, 1.10)	97.3		
	Bolus=HI	3	1,149	1.03 (0.99, 1.07)	0	3	1,149	0.79 (0.62, 1.02)	98.6		
	Sensitivity an	alysis							•		
	Removal of crossover studies	4	1,744	0.99 (0.94, 1.04)	52.6	4	1,996	0.88 (0.73, 1.05)	98.6		

CI=confidence interval; DM=diabetes mellitus; HI=human insulin; IAsp=insulin aspart; IDet=insulin detemir; NPH=Neutral Protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

Figure 13: Forest plot of all RCTs that examined the use of IDet versus NPH for the treatment of type 1 DM in adult patients – RR of severe hypoglycemia: Number of patients with at least one episode

Study or sub-category	Deternir n/N	NPH n/N	RR (random) 95% Cl	Weight %	RR (random) 95% Cl
Hermansen 2001	4/57	7/56		4.56	0.56 [0.17. 1.81]
Vaque 2003	24/301	21/146		20.62	0.55 [0.32, 0.96]
Home 2004	11/139	10/132		9.26	1.04 [0.46, 2.38]
Russell-Jones 2004	31/491	22/256	· · · · · · · · · · · · · · · · · · ·	22.73	0.73 [0.43, 1.24]
Standl 2004	18/154	14/134		14.43	1.12 [0.58, 2.16]
De Leeuw 2005	30/216	21/99		24.64	0.65 [0.40, 1.08]
Pieber 2005	5/132	4/129		3.75	1.22 [0.34, 4.45]
Total (95% CI)	1490	952	•	100.00	0.74 [0.58, 0.96]
Fotal events: 123 (Detemir), 99	(NPH)		-		
Test for heterogeneity: Chi ² = 4	.26, df = 6 (P = 0.64), l ² = 09	6			
Test for suprell offect: 7 = 3.21	(P = 0.02)				

CI=confidence interval; Det/IDet=insulin detemir; DM=diabetes mellitus; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

Figure 14: Forest plot of all RCTs that examined the use of IDet versus NPH for the treatment of type 1 DM in adult patients – Rate ratio for severe hypoglycemia

CI=confidence interval; Det/IDet=insulin detemir; DM=diabetes mellitus; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk; SE=standard error.

There was no heterogeneity in the meta-analysis of RR in either the overall analysis or within subgroups ($l^2=0$). However, there was significant heterogeneity ($l^2=62.3\%$) for the overall rate ratio measure, as well as in both bolus insulin groups. Within the HI group, removal of the only crossover study⁴³ caused the l^2 to fall from 60% to 0%. The possible source of heterogeneity in the IAsp subgroup was less clear, although the wide variation in geographic region may be partly responsible.

There was a low likelihood of publication bias for this outcome based on analysis of funnel plots (Appendix 14, Figure 6-7).

Nocturnal hypoglycemia: For nocturnal hypoglycemia, there was a small but statistically significant advantage for IDet [RR (95% CI)=0.92 (0.85, 0.98)] (Figure 15, Table 11). Two studies^{39,44} reported a statistically significant effect in favour of IDet. Results from subgroup analysis by bolus insulin were similar in magnitude, although the RR for HI was statistically non-significant. Removal of the single crossover study did not have a major impact on the overall result. The rate ratio for nocturnal hypoglycemia also significantly favoured IDet [rate ratio (95% CI)=0.66 (0.60, 0.73)]

(Figure 16); similar and statistically significant effects were observed in the HI and IAsp bolus insulin subgroups. Six of the eight RCTs in this analysis had statistically significant rate ratios in favour of IDet.^{39-41,44-46} Removal of the single crossover study in sensitivity analysis did not affect the overall pooled estimate. No studies used ILis as bolus insulin.

Figure 15: Forest plot of all RCTs that examined the use of IDet versus NPH for the treatment of type 1 DM in adult patients – RR of nocturnal hypoglycemia: Number of patients with at least one episode

Study or sub-category	Detemir n/N	NPH n/N	F	R (random) 95% Cl	Weight %	RR (random) 95% Cl
Vaque 2003	198/301	110/146		-	19.92	0.87 [0.77, 0.99]
Russell-Jones 2004	339/491	180/256		4	25.67	0.98 [0.89, 1.08]
Standl 2004	102/154	94/134		_	14.23	0.94 [0.81, 1.11]
De Leeuw 2005	180/216	87/99		4	27.02	0.95 [0.86, 1.04]
Pieber 2005	51/132	60/129			5.38	0.83 [0.63, 1.10]
Kolendorf 2006	58/125	81/128			7.78	0.73 [0.58, 0.92]
Total (95% Cl)	1419	892		•	100.00	0.92 [0.85, 0.98]
Total events: 928 (Detemir), 6	12 (NPH)			1		
Test for heterogeneity: Chi ² =	7.38. df = 5 (P = 0.19), l ² = 32	2.2%				
Test for overall effect: Z = 2.5	50 (P = 0.01)					
			0.1 0.2 0.5	5 1 2	5 10	

Favours Det Favours NPH

CI=confidence interval; Det/IDet=insulin detemir; DM=diabetes mellitus; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

Figure 16: Forest plot of all RCTs that examined the use of IDet versus NPH for the treatment of type 1 DM in adult patients – Rate ratio for nocturnal hypoglycemia

Study or sub-category	log[Rate Ratio] (SE)	Rate Ratio (random) 95% Cl	Weight %	Rate Ratio (random) 95% Cl
Hermansen 2001	-0.4847 (0.2642)		3.11	0.62 [0.37, 1.03]
Vague 2003	-0.4311 (0.0503)	-	15.98	0.65 [0.59, 0.72]
Home 2004	-0.6766 (0.1299)		8.49	0.51 [0.39, 0.66]
Russell-Jones 2004	-0.2719 (0.0398)	-	16.97	0.76 [0.70, 0.82]
Standl 2004	-0.3492 (0.0489)	-	16.12	0.71 [0.64, 0.78]
De Leeuw 2005	-0.3826 (0.0425)	-	16.73	0.68 [0.63, 0.74]
Pieber 2005	-0.1852 (0.1142)		9.71	0.83 [0.66, 1.04]
Kolendorf 2006	-0.6931 (0.0803)	+	12.88	0.50 [0.43, 0.59]
Total (95% Cl)		•	100.00	0.66 [0.60, 0.73]
Test for heterogeneity: Chi2	= 32.27, df = 7 (P < 0.0001), l² = 78.3%	•		
	14 (P = 0.00001)			

CI=confidence interval; DM=diabetes mellitus; IDet=insulin detemir; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; SE=standard error.

Heterogeneity in the overall meta-analysis of RR was minimal, although l^2 in the IAsp subgroup was nearly 50%. A high degree of heterogeneity was detected in the overall rate ratio analysis (l^2 =79%), as well as in the IAsp subgroup (l^2 =78%). In contrast, l^2 in the HI subgroup was 0%. As in the analysis of severe hypoglycemia, the diversity of geographic regions and populations studied may have contributed to the heterogeneity in the IAsp subgroup.

There was no evidence to indicate publication bias for the RR outcome (Appendix 14, Figure 8). However, a degree of asymmtery in the funnel plot for rate ratio was detected, indicating the possibility of reporting bias in favour of IDet for this measure of nocturnal hypoglycemia (Appendix 14, Figure 9).

Overall hypoglycemia: For overall hypoglycemia, the pooled RR (95% CI) was 1.00 (0.96, 1.04) (Figure 17, Table 11). There was also no statistically significant difference in both bolus insulin subgroups. However, the rate ratio significantly favoured IDet in both the overall analysis [rate ratio (95% CI)=0.84 (0.74, 0.97)] (Figure 18), as well as in subgroup analysis for both HI and IAsp.

Figure 17: Forest plot of all RCTs that examined the use of IDet versus NPH for the treatment of type 1 DM in adult patients – RR of overall hypoglycemia: Number of patients withat least one episode

Study or sub-category	Detemir n/N	NPH n/N		F	R (random) 95% Cl		Weight %	RR (random) 95% Cl
Hermansen 2001	54/57	51/56					10.62	1.04 [0.94, 1.15]
Vaque 2003	271/301	138/146					25.47	0.95 [0.90, 1.01]
Russell-Jones 2004	448/491	229/256					27.61	1.02 [0.97, 1.07]
Standl 2004	135/154	113/135					11.93	1.05 [0.95, 1.15]
Pieber 2005	92/132	100/129		2.0	-		5.78	0.90 [0.78, 1.04]
Kolendorf 2006	116/125	118/128			-		18.60	1.01 [0.94, 1.08]
Total (95% CI)	1260	850			•		100.00	1.00 [0.96, 1.04]
Total events: 1116 (Deternir),	749 (NPH)				T			
Test for heterogeneity: Chi2 =	7.23, df = 5 (P = 0.20), l ² = 30).8%						
Test for overall effect: Z = 0.1	11 (P = 0.91)							
			0.5	0.7	1	1.5	2	
			F	woure Dete	emir Fevou	re NDH		

CI=confidence interval; DM=diabetes mellitus; IDet=insulin detemir; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

Figure 18: Forest plot of all RCTs that examined the use of IDet versus NPH for the treatment of type 1 DM in adult patients – Rate ratio of overall hypoglycemia

Study or sub-category	log[Rate Rati	o] (SE)	Rate R	atio (random) 95% Cl		Weight %	Rate Ratio (random) 95% Cl
Hermansen 2001	-0.3071 (0.)	0636)	23			15.23	0.74 [0.65, 0.83]
Vague 2003	-0.2784 (0.)	0185)				17.23	0.76 [0.73, 0.78]
Russell-Jones 2004	-0.0368 (0.)	0169)				17.27	0.96 [0.93, 1.00]
Standl 2004	-0.3566 (0.)	0210)	1.0			17.17	0.70 [0.67, 0.73]
Pieber 2005	0.1540 (0.)	0467)				16.18	1.17 [1.06, 1.28]
Kolendorf 2006	-0.1938 (0.)	0297)				16.91	0.82 [0.78, 0.87]
Total (95% Cl)				•		100.00	0.84 [0.74, 0.97]
Test for heterogeneity: Chi ²	= 225.55, df = 5 (P < 0.0	00001), l² = 97.8%	6				
Test for overall effect: Z = 2	2.44 (P = 0.01)						
		0.1	0.2 0.5	1 2	5	10	
		F	avours Deterr	ir Favours	NPH		

CI=confidence interval; DM=diabetes mellitus; IDet=insulin detemir; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; SE=standard error.

The heterogeneity (I²) in the overall meta-analysis of RR was 30.8%, in the IAsp subgroup, 29.6%, and in the HI subgroup, 0%. I² values of over 90% were observed in the rate ratio. Individual rate ratios varied widely, from a statistically significant value of 1.17 in favour of NPH in one study, to 0.70 in favour of IDet in another. Sources of heterogeneity were unclear, although geographic diversity of study sites is a possible cause. As well, the narrow confidence intervals of individual estimates contributed to overall heterogeneity.

Asymmetry in funnel plots was observed, therefore reporting bias was likely present for both the RR and rate ratio measures of overall hypoglycemia (Appendix 14, Figures 10 to 11).

IDet+aspart versus NPH+HI

In the single study that compared these strategies,⁴⁹ the RR for severe and overall hypoglycemia were nearly 1 and statistically non-significant, while the RR for nocturnal hypoglycemia significantly favoured IDet [RR (95% CI)=0.65 (0.55, 0.77)] (Table 12). The rate ratios for nocturnal and overall hypoglycemia were also statistically significant [rate ratio (95% CI)=0.44 (0.39, 0.51) and 0.78 (0.74, 0.82), respectively].

 Table 12: Summary of results for comparison of IDet+aspart versus NPH+human insulin in adult type 1 DM –

 Relative risk and rate ratio of severe, nocturnal, and overall hypoglycemia

Type of	RR			Rate Ratio			
Hypoglycemia	No. of RCTs	Sample Size	RR (95% CI)	No. of RCTs	Sample Size	Rate Ratio (95% CI)	
Severe	1	595	1.05 (0.56, 1.96)	1	595	0.89 (0.58, 1.36)	
Nocturnal	1	595	0.65 (0.55, 0.77)	1	595	0.44 (0.39, 0.51)	
Overall	1	595	0.92 (0.84, 1.0)	1	595	0.78 (0.74, 0.82)	

CI=confidence interval; DM=diabetes mellitus; IDet=insulin detemir; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

IDet versus IGlar

One RCT⁴⁸ compared IDet with IGlar; IAsp was used as bolus insulin in both arms. RRs and rate ratios for severe, nocturnal, and overall hypoglycemia are shown in Table 13. Both the RR and rate ratio measures of severe hypoglycemia favoured IDet [RR (95% CI)=0.25 (0.07, 0.86) and rate ratio (95% CI)=0.41 (0.2, 0.86)]. The rate ratio for nocturnal hypoglycemia also significantly favoured IDet, although the RR was not statistically significant. There was no significant difference between treatments in either the RR or rate ratio of overall hypoglycemia.

 Table 13: Summary of results for comparison of IDet versus IGlar in adult type 1 DM –

 RR and rate ratio of severe, nocturnal, and overall hypoglycemia

Type of	RR			Rate Ratio			
Hypoglycemia	No. of RCTs	Sample Size	RR (95% CI)	No. of RCTs	Sample Size	Rate Ratio (95% CI)	
Severe	1	320	0.25 (0.07, 0.86)	1	320	0.41 (0.2, 0.86)	
Nocturnal	1	320	0.94 (0.75, 1.17)	1	320	0.66 (0.58, 0.76)	
Overall	1	320	1.05 (0.93, 1.19)	1	320	0.96 (0.92, 1.02)	

CC=confidence interval; DM=diabetes mellitus; IDet=insulin detemir; IGIar=insulin glargine; RCTs=randomized controlled trials; RR=relative risk.

d) Body weight

Study-level weight data are presented in Appendix 12a. The results of meta-analyses for body weight for the various comparisons are summarized in Table 14.

Table 14: Summary of results of meta-analyses for comparison of long-acting insulin analoguesversus NPH in adult type 1 DM: Overall results, subgroup analyses, andsensitivity analyses for body weight, WMD

Comparison	Analysis	No. of RCTs	Sample Size	WMD (95% Cl) in Body Weight (kg)	l² (%)
IGlar vs. NPH	All RCTs	4	1,152	-0.36 (-0.67, -0.04)	0
	Subgroup analysis by bolus	insulin			
	Bolus=IAsp	1	114	-0.24 (-0.87, 0.39)	NA
	Bolus=HI	1	394	0.10 (-2.83, 3.03)	NA
	Bolus=ILis	2	744	-0.40 (-0.77, -0.04)	0
	Sensitivity analysis				
	Removal of crossover	3	1,138	-0.40 (-0.76, -0.03)	0
	studies				
	Removal of studies	2	508	-0.22 (-0.84, 0.39)	0
	reporting only mean				
	change from baseline				
IDet vs. NPH	All RCTs	6	2,302	-0.73 (-1.42, -0.03)	0
	Subgroup analysis by bolus	insulin			
	Bolus=IAsp	4	1,267	-0.81 (-1.58, -0.05)	0
	Bolus=HI	2	1,035	-1.26 (-1.84, 1.33)	0
IDet+aspart vs. NPH+HI	All RCTs	1	595	-1.10 (-1.49, -0.71)	NA
IDet vs. IGlar	All RCTs	1	320	-0.5 (-1.21, 0.21)	NA

CI=confidence interval; DM=diabetes mellitus; IDet=insulin detemir; IGlar=insuling glargine; HI=human insulin; IAsp=insulin aspart; ILis=insulin lispro; NA=not applicable; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; vs.=versus; WMD=weighted mean difference.

IGlar versus NPH

Four RCTs^{50,54,59,60} reported either mean body weight at endpoint or mean change in body weight from baseline. Overall, body weight was significantly lower in the IGlar arm, although the difference was small [WMD (95% CI)=-0.36 kg (-0.67, -0.04)] (Figure 19). There was no heterogeneity (l²=0%). Removal of crossover studies, or of studies only reporting mean weight at endpoint rather than mean change from baseline, did not have a major effect on the WMD point estimate. Similarly, mean differences within subgroups defined by bolus insulin were similar to the overall estimate, with the exception of HI, for which the single available study reported a difference that was 0.10 kg higher in the IGlar arm (p>0.05).

Figure 19: Forest plot of all RCTs that examined the use IGlar versus NPH for the treatment of type 1 DM in adult patients – Body weight, WMD

Study or sub-category	N	Glargine Mean (SD)	N	NPH Mean (SD)	WMD (random) 95% Cl	Weight %	WMD (random) 95% Cl
Raskin 2000	310	0.12(2.83)	309	0.54(2.83)	-	49.75	-0.42 [-0.87, 0.03]
Hershon 2004	195	76.00(14.50)	199	75.90(15.20)		- 1.15	0.10 [-2.83, 3.03]
Davies 2005	57	81.68(1.72)	57	81.92(1.72)	_ 	24.81	-0.24 [-0.87, 0.39]
Fulcher 2005	62	1.97(1.82)	63	2.34(1.82)		24.29	-0.37 [-1.01, 0.27]
Total (95% Cl)	624		628		•	100.00	-0.36 [-0.67, -0.04]
Test for heterogeneity: Ch	ni² = 0.30, df = 3 (P	= 0.96), I ² = 0%			•		
Test for overall effect: Z =	= 2.23 (P = 0.03)						
					-4 -2 0 2	4	
					Favours Glargine Favours NF	Н	

Heterogeneity I² describes the heterogeneity among the included studies. CI=confidence interval; DM=diabetes mellitus; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; SD=standard deviation; WMD=weighted mean difference.

IGlar+lispro versus NPH+human insulin

Body weight data were not reported for this comparison.

IDet versus NPH

Six RCTs^{40-42,44-46} reported mean body weight at endpoint for this comparison. Overall, IDet was associated with significantly lower body weight than NPH [WMD (95% CI)=-0.73 kg (-1.42, -0.03)] (Figure 20). Results within subgroups defined by bolus insulin were similar, although the pooled estimate in the HI subgroup was statistically non-significant. There were no crossover studies in this comparison.

Figure 20: Forest plot of all RCTs that examined the use of IDet versus NPH for the treatment of type 1 DM in adult patients – Body weight, WMD

CI=confidence interval; Det/IDet=insulin detemir; DM=diabetes mellitus; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; SD=standard deviation; WMD=weighted mean difference.

There was no significant heterogeneity among trials ($l^2=0\%$). The potential for publication bias was minimal based on analysis of the funnel plot (Appendix 14, Figure 12).

IDet+IAsp versus NPH+ HI

One RCT⁴⁹ reported that there was a statistically significant decrease in body weight at the end of treatment in the IDet+IAsp group compared with NPH+HI [mean difference (95% CI)=-1.10 kg (-1.49, -0.71)].

IDet versus IGlar

In the single RCT reporting the results of this comparison,⁴⁸ no statistically significant difference was found in body weight [mean difference (95% CI)=-0.5 kg (-1.21, 0.21)].

e) Diabetic ketoacidosis

No studies reported data on diabetic ketoacidosis.

f) Generic or diabetes-related quality-of-life

Study-level quality-of-life data are presented in Appendix 15a. One RCT⁵⁸ reported a non-significant difference between IGIar and NPH in terms of HRQoL as measured by change from baseline in the Well-being Questionnaire (W-BQ) General Well-being score [mean difference (95% CI)=-0.35 (-1.5, 0.8). HRQoL data were not reported for other comparisons.

g) Patient satisfaction with diabetes treatment

In the same study that reported HRQoL,⁵⁸ the difference in terms of satisfaction with treatment as measured by the Diabetes Treatment Satisfaction Questionnaire (DTSQ) was statistically significant in favour of IGlar [WMD (95% CI)=1.83 (0.82, 2.84)]. Patient satisfaction data were not reported for other comparisons.

h) Patient self-management

No trials reported data on patient self-management.

i) Resource utilization

No studies reported data related to resource utilization.

j) Long-term diabetic complications

No studies listed long-term complications such as mortality, cardiovascular disease, or retinopathy as outcomes of interest. However, some studies reported the incidence of such events [see Appendix 13a, "Adverse Events Data (excluding hypoglycemia) for RCTs in Type 1 DM"]. In all cases, the number of events observed was too small for adequate comparisons to be made.

Non-fatal ischemic heart disease

Two RCTs^{39,96} comparing IDet with NPH reported the incidence of ischemic heart disease. Standl *et al.*⁴⁶ reported one case in the IDet arm and none in the NPH group, while Kolendorf *et al.*³⁹ reported no cases in either treatment arm. Data on this outcome were not reported for other comparisons.

Retinopathy

One RCT⁵⁹ reported outcomes related to retinopathy for the comparison of IGlar versus NPH; there was no statistically significant difference between treatments [RR (95% CI)=1.28 (0.48, 3.40)]. Two RCTs^{40,46} reported this outcome for the comparison of IDet versus NPH. Again, no statistically significant difference was observed [RR (95% CI)=0.71 (0.40, 1.26)] (Figure 21). In the only study comparing IDet with IGlar,⁴⁸ there was one case with retinopathy in the IDet arm and none in the IGlar arm. No data related to retinopathy were reported for the remaining comparisons.

Figure 21: Forest plot of all RCTs that examined the use of IDet versus NPH for the treatment of type 1 DM in adult patients – RR of retinopathy: Number of patients

CI=confidence interval; Det/IDet=insulin detemir; DM=diabetes mellitus; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

Stroke / Transient-ischemic attack

One RCT⁴² reported one case of stroke/TIA with IDet versus none in the NPH arm. There was no data on this outcome for other comparisons.

Mortality

Study-level mortality data are presented in Appendix 16a. Of the 14 studies comparing IGlar with NPH, only Ratner *et al.*, 2000⁵⁶ reported one death (secondary to cardiopulmonary arrest) in the NPH arm. Two RCTs^{39,42} comparing IDet with NPH reported all-cause mortality. Pieber *et al.*⁴² reported one death in the IDet arm and none in the NPH arm, while Kolendorf *et al.*³⁹ reported one death in the NPH arm and none in the IDet arm. In the single RCT⁴⁹ that compared IDet+IAsp with NPH+human insulin, a single death (due to lung tumour) occurred in the latter arm. Mortality data were not reported for the remaining comparisons.

k) Adverse events (excluding hypoglycemia)

Seventy-four per cent of trials reported the type and incidence of adverse events (Appendix 13a). The most commonly reported adverse events with the long-acting insulin analogues were local injection-site reactions, respiratory tract infection, gastrointestinal disorders, edema, rhinitis, and headache. Similar adverse events were also reported with NPH. No systemic allergic reactions with insulin treatment were reported in these trials. Overall, there were no apparent differences in the adverse event profile of the long-acting insulin analogues as compared with NPH, except that injection site reactions appeared to be more common with IGIar.

7.4.3 Pediatric type 2 DM

No RCTs of long-acting insulin analogues were identified for this population.

7.4.4 Adult type 2 DM

a) Glycosylated hemoglobin

Study-level A1c data are shown in Appendix 11b. In addition to mean A1c, some RCTs also reported the proportion of patients achieving a target A1c level of \leq 7%. Results of meta-analyses for each comparison according to both A1c measures are shown in Table 15. Forest plots for analyses with more than one RCT are shown in Figures 22 to 25.

Table 15: Summary of results of meta-analyses for comparison of long-acting insulin analogues versusNPH insulin or OADs in adult type 2 DM – Overall results, subgroup analyses,
and sensitivity analyses for mean A1c (%) and RRof achieving A1c≤7%.

Comparison	Analysis	Mean	Mean A1c (%) RR of Achieving A1c≤						
		No. of RCTs	Sample Size	WMD (95% CI)	l² (%)	No. of RCTs	Sample Size	RR (95% CI)	² (%)
IGlar vs. NPH (with OADs)	All RCTs	9	3,397	-0.05 (-0.13, 0.04)	13.4	2	1,237	1.19 (0.80, 1.77)	77.6
	Subgroup a	analysis E	by OAD				-		
	OAD=Sfu	4	1,407	-0.18 (-0.30, -0.05)	0	1	481	1.50 (1.05, 2.16)	NA
	OAD=MF	1	110	-0.02 (-0.38, 0.34)	NA	0	NA	NA	NA
	OAD=var	4	1,880	0.03 (-0.07, 0.12)	0	1	456	1.01 (0.90, 1.14)	NA
	Sensitivity	analysis							
	Removal of RCTs≤3 months	7	3,241	-0.06 (-0.14, 0.03)	12.8	0	NA	NA	NA
IGlar vs. NPH (w/o OADs)*	All RCTs	1	518	0.28 (0.07, 0.49)	NA	1	100	0.81 (0.32, 2.06)	NA
IDet vs. NPH (with various OADs)	All RCTs	3	1,159	0.13 (0.03, 0.22)	2.2	1	463	0.95 (0.85, 1.06)	NA
IDet vs. NPH (with pre- meal IAsp)	All RCTs	1	505	0.10 (-0.18, 0.38)	NA	0	NA	NA	NA
IDet+IAsp vs. NPH+ HI	All RCTs	1	394	0.06 (-0.31, 0.19)	NA	0	NA	NA	NA
IDet vs. IGlar (with various OADS)	All RCTs	1	582	0.10 (-0.06, 0.26)	NA	1	582	1.00 (0.86, 1.17)	NA
IDet vs. IGlar (with pre- meal IAsp)	All RCTs	1	385	0.20 (0.10, 0.30)	NA	0	NA	NA	NA
IGlar vs. TZDs as add-	All RCTs	3	624	-0.20 (-0.38, -0.01)	14.5	1	226	0.98 (0.74, 1.29)	NA
on to	Subgroup a	analysis b	by TZD		•			1	
STU+MF	TZD=Pio	1	388	-0.30 (-0.05, -0.10)	NA	0	NA	NA	NA
	TZD=Ros	2	236	-0.05 (-0.30, 0.21)	0	1	226	0.98 (0.74, 1.29)	NA

* Most subjects (>60%) also used regular human insulin for postprandial control in the single study that reported this comparison.⁷⁴ Atc=glycosylated hemoglobin; CI=confidence interval; DM=diabetes mellitus; IAsp=insulin aspart; IDet=insulin detemir; IGIar=insulin glargine; MF=metformin; NA=not applicable; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; Pio=pioglitazone; RCT=randomized controlled trial; Ros=rosiglitazone; RR=relative risk; Sfu=sulfonylurea; TZD=thiazolidinedione; var=various; vs.=versus; WMD=weighted mean difference.

IGlar versus NPH

Nine RCTs⁷⁶⁻⁸⁴ reported A1c differences for IGIar versus NPH in patients also treated with OADs. The pooled difference in mean A1c was not significant [WMD (95% CI) = -0.05% (-0.13, 0.04)] (Figure 22). Removal of the two studies that had durations of less than three months did not have a major effect on the results. Pooled estimates within each of three subgroups defined by the type of OAD used (i.e., sulfonylurea, metformin, or various) were also similar to the overall pooled estimate, although the WMD for the sulfonylurea subgroup was statistically significant. There was no significant difference in the RR of achieving A1c \leq 7% (Figure 23), although only two studies contributed data for this measure.^{77,82} Heterogeneity was minimal for the mean A1c measure (l²=13.4%), but substantial for the RR measure (l²=77.6%). In terms of the latter, the study in which sulfonylureas were used demonstrated a statistically significant RR of 1.5,⁸² while the study that used various OADs found a non-significant RR of 1.01.⁷⁷ The type of OAD may therefore have contributed to the high degree of heterogeneity in the pooled RR analysis.

Based on visual analysis of the funnel plot, publication bias was likely in the mean A1c measure (Appendix 14, Figure 13).

Figure 22: Forest plot of all RCTs that examined the use of IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – A1c, WMD

Study		(Glar+OAD)		(NPH+OAD)	VMD (random)	Weight	VVMD (random)
or sub-category	N	Mean (SD)	N	Mean (SD)	95% CI	%	95% CI
Yki-Järvinen 2000	214	8.34(1.32)	208	8.24(1.30)		10.15	0.10 [-0.15, 0.35]
Fritsche 2003	227	8.10(1.30)	232	8.30(1.30)	_ _	11.07	-0.20 [-0.44, 0.04]
HOE 2003	64	8.98(1.50)	68	8.68(1.40)		- 2.84	0.30 [-0.20, 0.80]
Massi 2003	289	8.54(1.20)	281	8.52(1.10)	_ _ _	16.28	0.02 [-0.17, 0.21]
Riddle 2003	367	6.96(0.90)	389	6.97(0.90)	_ _	28.68	-0.01 [-0.14, 0.12]
Eliaschewitz 2006	231	7.65(1.30)	250	7.78(1.29)		11.58	-0.13 [-0.36, 0.10]
Yki-Järvinen 2006	61	7.14(0.94)	49	7.16(0.98)		5.18	-0.02 [-0.38, 0.34]
Pan 2007	220	7.90(1.16)	223	8.13(1.19)	_	12.77	-0.23 [-0.45, -0.01]
Wang 2007	16	7.62(0.98)	8	7.43(0.73)		1.46	0.19 [-0.51, 0.89]
iotal (95% Cl)	1689		1708		-	100.00	-0.05 [-0.13, 0.04]
Fest for heterogeneity: Chi	² = 9.24, df = 8 (P =	= 0.32), I ² = 13.4%			-		
ſest for overall effect: Z =	1.05 (P = 0.29)						
					-1 -0.5 0 0.5	1	
					Favours (Glar+OAD) Eavours (NP	H+OAD)	

Atc=glycosylated hemoglobin; CI=confidence interval; DM=diabetes mellitus; Glar/IGlar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; SD=standard deviation; WMD=weighted mean difference.

Figure 23: Forest plot of all RCTs that examined the use IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – RR of achieving A1c≤7%

Study or sub-category	Glar+OAD n/N	NPH+OAD n/N			RR 9	(randor 95% Cl	n)		Weight %		RR (random) 95% Cl
Riddle 2003	213/367	223/389				-			58.88	1.01	[0.90, 1.14]
Eliaschewitz 2006	57/231	41/250				-	-		41.12	1.50	[1.05, 2.16]
Total (95% CI)	598	639				+	•		100.00	1.19	[0.80, 1.77]
Total events: 270 (Glar+OAD), 264 (NPH+OAD)										
Test for heterogeneity: Chi2 =	= 4.46, df = 1 (P = 0.03), l ² = 77.6	%									
Test for overall effect: Z = 0.	.87 (P = 0.38)										
			0.1	0.2	0.5	1	2	5	10		
			Favo	ours (NF	PH+OAD) Fa	vours	(Glar+	OAD)		

Atc=glycosylated hemoglobin; CI=confidence interval; DM=diabetes mellitus; Glar/IGIar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; RR=relative risk.

One RCT⁷⁴compared the effects of IGIar and NPH in patients not treated with OADs. Most subjects in this study received pre-meal bolus insulins. The mean A1c difference in this study significantly favoured NPH [mean difference (95% CI)=0.28% (0.07, 0.49)]. A subgroup analysis of this study that included only those patients treated with once-daily NPH insulin⁷⁵ reported the number of patients who reached a target A1c of \leq 7%. No statistically significant difference was detected.

IDet versus NPH

Three RCTs^{69,70,91} reported A1c differences for IDet versus NPH in patients also treated with OADs (Figure 24). The pooled result significantly favoured NPH insulin [WMD (95% CI) = 0.13% (0.03, 0.22)]. All three studies used various OADs, therefore subgroup analysis was not possible. One study⁶⁹ also reported the number of patients who reached A1c \leq 7%; no significant difference was found between groups.

Figure 24: Forest plot of all RCTs that examined the use of IDet+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – A1c, WMD

A1c=glycosylated hemoglobin; Cl=confidence interval; Det/IDet=insulin detemir; DM=diabetes mellitus; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; SD=standard deviation; WMD=weighted mean difference.

Only one study⁶⁸ compared IDet versus NPH in patients also treated with pre-meal insulin aspart. No statistically significant difference was found between the two treatment arms in terms of mean A1c. This study did not report the proportion achieving A1c≤7%.

IDet+IAsp versus NPH+HI

One study⁷¹ reported the comparison of IDet with aspart versus NPH with HI. This study reported both mean A1c and the proportion achieving A1c≤7%. No significant differences were reported according to either measure.

IDet versus IGlar

One study⁷³ compared IDet versus IGIar in patients also treated with various OADs. This study reported both mean A1c and proportion achieving A1c≤7%. No significant differences were reported according to either measure.

One study also compared IDet and IGlar in patients treated with pre-meal insulin aspart.⁷² Mean A1c was significantly higher by 0.2% in the IDet group as compared to IGlar in this study.

Long-acting insulin analogues versus OADs

Three RCTs^{86,88,89}compared IGIar versus TZDs as add-on therapy in patients inadequately controlled on sulfonylureas and metformin. A statistically significant difference was seen in favour of IGIar in terms of mean A1c (Figure 25) [WMD (95% CI)=-0.20% (-0.38, -0.01)]. In subgroup analysis, the single

RCT that studied pioglitazone reported a statistically significant WMD of -0.30%, while the pooled WMD for the two studies that studied rosiglitazone was -0.05% and non-significant. One RCT⁸⁸ also reported the number of patients who reached A1c≤7%. There was no statistically significant difference between the two arms.

No studies comparing IGlar with OADs other than TZDs were identified. There were also no studies comparing IDet with any of the OADs.

Figure 25: Forest plot of all RCTs that examined the use of IGlar versus OAD for the treatment of type 2 DM in adult patients – A1c, WMD

Study or sub-category	N	Glar Mean (SD)	N	OAD Mean (SD)	VVMD (random) 95% Cl	Weight %	VVMD (random) 95% Cl
Oster 2006	189	6.70(1.00)	199	7.00(1.00)		58.77	-0.30 [-0.50, -0.10]
Rosenstock 2006b	104	7.14(1.00)	112	7.19(1.00)	— <u> </u>	37.79	-0.05 [-0.32, 0.22]
Triplitt 2006	10	7.60(0.95)	10	7.60(1.26)		- 3.44	0.00 [-0.98, 0.98]
Total (95% Cl)	303		321		-	100.00	-0.20 [-0.38, -0.01]
Test for heterogeneity: Chi2 =	2.34, df = 2 (P =	0.31), I ^z = 14.5%			-		
Test for overall effect: Z = 2.	09 (P = 0.04)						
					-1 -0.5 0 0.5	1	
					Favours Glar Favours OAD		

Arc=glycosylated hemoglobin; Cl=confidence interval; DM=diabetes mellitus; Glar/IGlar=insulin glargine; OAD=oral antidiabetic (thiazolidinediones); RCTs=randomized controlled trials; SD=standard deviation; WMD=weighted mean difference.

b) Fasting plasma glucose

Study-level FPG data are presented in Appendix 11b. Pooled estimates of FPG for the various comparisons are presented in Table 16.

IGlar versus NPH

Six RCTs^{77,79,81-83,93} compared the effects of IGlar versus NPH on FPG in patients also treated with OADs. The pooled estimate did not indicate a statistically significant difference between treatments (Figure 26). Similar effects were observed in the subgroup of studies that used sulfonylureas and various OADs.

Figure 26: Forest plot of all RCTs that examined the use of IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – FPG, WMD

Study		(Glar+OAD)		(NPH+OAD)	WMD (random)	Weight	WMD (random)
or sub-category	N	Mean (SD)	N	Mean (SD)	95% CI	×	95% CI
HOE 2003	64	9.00(3.10)	68	8.62(3.10)		2.74	0.38 [-0.68, 1.44]
Massi 2003	289	9.70(3.30)	281	9.60(3.20)		10.79	0.10 [-0.43, 0.63]
Riddle 2003	367	6.50(2.71)	389	6.70(2.71)		20.57	-0.20 [-0.59, 0.19]
Eliaschewitz 2006	231	6.40(2.00)	250	6.60(2.50)	_	18.90	-0.20 [-0.60, 0.20]
Pan 2007	220	6.50(1.39)	223	6.61(1.44)	— —	44.24	-0.11 [-0.37, 0.15]
Wang 2007	16	6.06(1.22)	8	5.84(1.26)		2.74	0.22 [-0.84, 1.28]
Total (95% Cl)	1187		1219		-	100.00	-0.10 [-0.28, 0.07]
Test for heterogeneity: Chil	² = 2.18, df = 5 (P = 1.12 (P = 0.26)	= 0.82), I ^z = 0%			-		. , .
	1.12 (1 = 0.20)						
					-1 -0.5 0 0.5	1	
					Favours (Glar+OAD) Favours (N	PH+OAD)	

CI=confidence interval; DM=diabetes mellitus; FPG=fasting plasma glucose; Glar/IGIar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; SD=standard deviation; WMD=weighted mean difference.

There was no heterogeneity across trials ($I^2=0\%$). Based on funnel plot analysis, publication bias for this outcome was likely (Appendix 14, Figure 14).

The study that compared IGIar with NPH in patients not treated with OADs did not report FPG data. 74

IDet versus NPH

Three studies^{69,70,91} reported FPG data for this comparison in patients also treated with OADs. There was no significant difference between treatments (Figure 27). However, there was a high degree of heterogeneity (I²=69.0%). One of the three studies found a statistically significant benefit in favour of IDet,⁷⁰ while the other two found a non-significant benefit in favour of NPH.^{69,91} One possible cause for the observed heterogeneity may be that both insulins were administered once daily in the former study, and twice daily in the latter studies.

Figure 27: Forest plot of all RCTs that examined the use of IDet+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – FPG, WMD

CI=confidence interval; Det/IDet=insulin detemir; DM=diabetes mellitus; FPG=fasting plasma glucose; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; SD=standard deviation; WMD=weighted mean difference.

No significant difference in mean FPG was found in the single study that compared IDet with NPH in patients also treated with pre-meal IAsp.⁶⁸

IDet versus IGlar

No significant difference in mean FPG was found in the only study that compared IDet with IGlar in patients also treated with OADs.⁷³ Similarly, there was no significant difference in the study that compared these agents in patients treated with IAsp as bolus insulin.⁷²

Long-acting insulin analogues versus OADs

Two RCTs^{88,89} compared the effects of IGIar with rosiglitazone on FPG. The pooled estimate revealed a significant reduction in FPG in the IGIar group compared with the TZD group [WMD (95% CI)=-1.04 mmol/L (-1.64, -0.45)] (Table 16). Each study reported a similar point estimate of the difference in FPG, although the result was statistically significant in only one study.⁸⁸

c) Two-hour post-prandial plasma glucose

No studies reported data on this outcome.

Table 16: Summary of results of meta-analyses for comparison of long-acting insulinanalogues versus NPH insulin or OADs in adult type 2 DM – Overall results,subgroup analyses, and sensitivity analyses for mean FPG (mmol/L)

Comparison	Analysis	No. of RCTs	Sample size	WMD (95% Cl) in FPG (mmol/L)	²
IGlar vs. NPH	All RCTs	6	2,406	-0.10 (-0.28, 0.07)	0
(with OADs)	Subgroup analys	is by OAD			
	OAD=Sfu	3	948	-0.12 (-0.34, 0.09)	0
	OAD=var	3	1,458	-0.06 (-0.36, 0.24)	0
IDet vs. NPH (with various OADs)	All RCTs	2	784	-0.14 (-1.02, 0.74)	83.2 %
IDet vs. NPH (with pre- meal IAsp)	All RCT	1	461	0.1 (-0.61, 0.81)	NA
IDet vs. IGlar (with various OADs)	All RCT	1	582	0.1 (-0.31, 0.51)	NA
IDet vs. IGlar (with pre-meal IAsp)	All RCT	1	385	0.1 (-0.67, 0.87)	NA
IGlar vs. Ros	All RCTs	2	236	-1.04 (-1.64, -0.45)	0
	Sensitivity analys	sis			
	Removal of studies only reporting mean change from baseline	1	20	-1.18 (-3.32, 0.87)	NA

CI=confidence interval; DM=diabetes mellitus; FPG=fasting plasma glucose; IAsp=insulin aspart; IDet=insulin detemir; IGIar=insulin glargine; NA=not applicable; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCT=randomized controlled trial; Ros=rosiglitazone; Sfu=sulfonylurea; var=various; vs.=versus; WMD=weighted mean difference.

d) Hypoglycemia

Study-level data for hypoglycemia are presented in Appendix 10b. The definitions of hypoglycemia used in trials are also provided in Appendix 10b. Results of meta-analysis for the various comparisons are presented in Tables 17 to 22.

IGlar versus NPH (in patients also treated with OADs)

The numbers of RCTs reporting sufficient data to calculate the RR of severe, nocturnal, and overall hypoglycemia for this comparison were 7,^{76-79,81-83} 7,^{76,78,79,81,83,84} and 8,^{76-81,83,84} respectively. The numbers of RCTs reporting sufficient data to calculate the rate ratio of severe, nocturnal, and overall hypoglycemia were 3,^{76,77,82} 4,^{76,77,79,82} and 4,^{76,77,79,82} respectively.

Results of meta-analysis for this outcome are presented in Table 17. Overall, there was no statistically significant difference between IGIar and NPH in terms of severe hypoglycemia, although significant differences were identified for nocturnal and overall hypoglycemia.

Severe hypoglycemia: The pooled relative risk for severe hypoglycemia was not statistically significant (Figure 28). Only one RCT⁷⁶ reported a statistically significant effect in favour of IGIar. RR was not estimable in two RCTs^{79,83} because of zero event rates in both treatment arms. There was a

high degree of heterogeneity in the overall result (I²=64.3%). Publication bias was likely based on asymmetry observed in the funnel plot (Appendix 14, Figure 15).

Table 17: Summary of results of meta-analyses for comparison of insulin glargine versus NPH in adulttype 2 DM, in patients also receiving oral antidiabetic agents – Overall results, subgroup analyses,and sensitivity analyses for RR and rate ratio of severe, nocturnal, and overall hypoglycemia

Type of	Analysis	RR				Rate Ra	tio		
Hypo- glycemia		No. of RCTs	Sample Size	RR (95% CI)	l² (%)	No. of RCTs	Sample Size	Rate Ratio (95% Cl)	² (%)
Severe	All RCTs	7	2,866	0.66 (0.29, 1.48)	64.3	3	1,681	0.56 (0.35, 0.91)	84.5
	Subgroup	analysis	by OAD						
	OAD=Sfu	4	1,408	0.40 (0.17, 0.94)	51.9	2	925	0.33 (0.19, 0.60)	71.4
	OAD=var	3	1,458	1.44 (0.64, 3.22)	0	1	367	1.65 (0.71, 3.81	NA
Nocturnal	All RCTs	7	2,532	0.56 (0.47, 0.68)	32.3	4	1,705	0.41 (0.29, 0.59)	92.2
	Subgroup	analysis	by OAD						
	OAD=Sfu	4	1,408	0.63 (0.52, 0.75)	19.1	3	949	0.36 (0.32, 0.40)	0
	OAD=var	3	1,124	0.46 (0.34, 0.60)	0	1	756	0.58 (0.53, 0.64)	NA
Overall	All RCTs	8	2,642	0.87 (0.81, 0.93)	0	4	1,705	0.82 (0.64, 1.06)	94.1
	Subgroup	analysis	by OAD						
	OAD=Sfu	4	1,408	0.88 (0.80, 0.96)	18.3	3	949	0.78 (0.48, 1.28)	95.5
	OAD=MF	1	110	0.95 (0.68, 1.32)	NA	NA	NA	NA	NA
	OAD=var	3	1,124	0.80 (0.69, 0.94)	0	1	756	0.79, (0.74, 0.83)	NA

CI=confidence interval; DM=diabetes mellitus; MF=metformin; NA=not applicable; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCT=randomized controlled trial; RR=relative risk; Sfu=sulfonylurea; var=various.

Within the subgroup of RCTs that used sulfonylureas, a statistically significant risk reduction was observed in favour of IGIar [RR (95% CI)=0.40 (0.17, 0.94)]. In contrast, the subgroup of studies that used various OADs demonstrated a non-significant RR of 1.44. The residual heterogeneity observed in the sulfonylurea subgroup (I^2 =51.9%) may have been due to differences in ethnicity across trials – for example, one study was conducted in China⁷⁶ and another in Latin America⁷⁷ – or to the fact that studies titrated insulin doses to achieve different FPG levels – for example, 6.3 mmol/L in the Latin American study⁷⁷ and 7.7 mmol/L in the Chinese study.⁷⁶

In terms of the rate ratio for severe hypoglycemia, there was no significant difference between treatments (Figure 29). Significant heterogeneity was observed in this analysis (I²=84.5%). Similar to the RR analysis, the rate ratio was significantly lower in favour of IGlar in the two studies that used sulfonylureas [pooled rate ratio (95% CI)=0.33 (0.19, 0.60)], and non-significant in the single study

that used various OADs. A high degree of heterogeneity remained in the sulfonylurea subgroup, possibly due to the same influences described for the RR.

Figure 28: Forest plot of all RCTs that examined the use of IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – RR of severe hypoglycemia

CI=confidence interval; DM=diabetes mellitus; Glar/IGlar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; RR=relative risk.

Figure 29: Forest plot of all RCTs that examined the use IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Rate ratio of severe hypoglycemia

Study or sub-category	log[rate ratio] (SE)	rate ratio (random) 95% Cl	Weight %	rate ratio (random) 95% Cl
Riddle 2003	0.5001 (0.4272)		33.58	1.65 [0.71, 3.81]
Eliaschewitz 2006	-0.6931 (0.3703)		34.90	0.50 [0.24, 1.03]
Pan 2007	-1.8718 (0.5106)		31.52	0.15 [0.06, 0.42]
Total (95% CI)			100.00	0.51 [0.15, 1.79]
Test for heterogeneity: Chi ²	= 12.89, df = 2 (P = 0.002), l ² = 84.5%	-		
Test for overall effect: Z = 1.	.05 (P = 0.30)			
	0.001	0.01 0.1 1 10 10	0 1000	

Favours (Glar+OAD) Favours (NPH+OAD)

CI=confidence interval; DM=diabetes mellitus; Glar/IGlar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; SE=standard error.

Nocturnal hypoglycemia: The overall RR for nocturnal hypoglycemia significantly favoured IGIar [RR (95% CI)=0.56 (0.47, 0.68)] (Figure 30). The subgroup analysis also indicated a statistically significant benefit for both the sulfonylurea and various OAD subgroups. There was no significant heterogeneity in either the overall analysis (I²=32.3%) or within each subgroup. Publication bias was likely based on visual analysis of the funnel plot (Appendix 14, Figure 16).

The overall pooled rate ratio, as well as pooled rate ratios from subgroup analysis by OAD, also significantly favoured IGIar (Figure 31). The heterogeneity of the overall analysis was high $(I^2=92.2\%)$, although there was no heterogeneity within each subgroup.

Figure 30: Forest plot of all RCTs that examined the use of IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – RR of nocturnal hypoglycemia

Study or sub-category	Glar+OAD n/N	NPH+OAD n/N	RR (random) 95% Cl	Weight %	RR (random) 95% Cl
Yki-Järvinen 2000	21/214	50/208		11.22	0.41 [0.25, 0.65]
Fritsche 2003	52/227	89/232		21.59	0.60 [0.45, 0.80]
HOE 2003	4/64	13/68		2.71	0.33 [0.11, 0.95]
Massi 2003	35/289	67/281		15.71	0.51 [0.35, 0.74]
Eliaschewitz 2006	47/231	87/250	_ _ _	20.21	0.58 [0.43, 0.79]
Pan 2007	77/221	111/223		27.77	0.70 [0.56, 0.88]
Wang 2007	1/16	4/8		0.79	0.13 [0.02, 0.94]
Total (95% Cl) Total events: 237 (Glar+OAD)	1262 421 (NPH+OAD)	1270	•	100.00	0.56 [0.47, 0.68]
Test for beterogeneity: Chi ² =	8.86 df = 6 (P = 0.18) P = 32	3%			
Test for overall effect: $Z = 6.2$	21 (P < 0.00001)				
			0.1 0.2 0.5 1 2	5 10	
			Favours (Glar+OAD) Favours (N	PH+OAD)	

CI=confidence interval; DM=diabetes mellitus; Glar/IGlar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; RR=relative risk.

Figure 31: Forest plot of all RCTs that examined the use IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Rate ratio of nocturnal hypoglycemia

CI=confidence interval; DM=diabetes mellitus; Glar/IGlar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; SE=standard error.

Overall hypoglycemia: The pooled RR for overall hypoglycemia significantly favoured IGIar [RR (95% CI)=0.87 (0.81, 0.93)] (Figure 32). The subgroup analysis showed a statistically significant benefit for studies that used sulfonylureas, as well as those that used various OADs. There was no significant heterogeneity observed in the overall analysis (I²=0), or within each subgroup. Publication bias was unlikely based on analysis of the funnel plot (Appendix 14, Figure 17).

The pooled estimate of the rate ratio was not statistically significant (Figure 33). Similar results were obtained in the subgroup analysis, except that the estimate from the single study that used various OADs was statistically significant. There was a high degree of heterogeneity in both the overall analysis (l²=94.1%) as well as in the sulfonylrea subgroup. Study differences in terms of ethnicity of subjects and target FPG levels may have contributed to heterogeneity, as described in the "Severe hypoglycemia" section. Another possible factor is study duration: only the Wang study⁷⁹ was of less than three months duration, while the remaining two studies were longer than three months.

Figure 32: Forest plot of all RCTs that examined the use of IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – RR of overall hypoglycemia

Study or sub-category	Glar+OAD n/N	NPH+OAD n/N		RR (random) 95% Cl	Weight %	RR (random) 95% Cl
Yki-Järvinen 2000	70/214	88/208			7.49	0.77 [0.60, 0.99]
Fritsche 2003	155/227	173/232		-	34.43	0.92 [0.82, 1.03]
HOE 2003	12/64	22/68			1.23	0.58 [0.31, 1.07]
Massi 2003	101/289	115/281			10.46	0.85 [0.69, 1.05]
Eliaschewitz 2006	122/231	157/250		-	19.41	0.84 [0.72, 0.98]
Yki-Järvinen 2006	33/61	28/49			4.14	0.95 [0.68, 1.32]
Pan 2007	130/221	150/223		-	22.63	0.87 [0.76, 1.01]
Wang 2007	2/16	4/8	←	• 	0.22	0.25 [0.06, 1.09]
Total (95% CI)	1323	1319		•	100.00	0.87 [0.81, 0.93]
Total events: 625 (Glar+OAD), 737 (NPH+OAD)			•		
Test for heterogeneity: Chi2 :	= 6.79, df = 7 (P = 0.45), l ² =	: 0%				
Test for overall effect: Z = 4.	08 (P < 0.0001)					
			0.1 0.2	0.5 1 2	5 10	
			Favours	Glar+OAD Favours	NPH+OAD	

CI=confidence interval; DM=diabetes mellitus; Glar/IGlar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; RR=relative risk.

Figure 33: Forest plot of all RCTs that examined the use of IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Rate ratio of overall hypoglycemia

Study or sub-category	log[Rate R] (SE)	Rate R (random) 95% Cl	Weight %	Rate R (random) 95% Cl
Riddle 2003	-0.2417 (0.0272)		33.56	0.79 [0.74, 0.83]
Eliaschewitz 2006	-0.3646 (0.0555)	=	32.07	0.69 [0.62, 0.77]
Pan 2007	0.1385 (0.0562)	-	32.02	1.15 [1.03, 1.28]
Wang 2007	-1.7918 (0.8165) —		2.35	0.17 [0.03, 0.83]
Fotal (95% Cl)		•	100.00	0.82 [0.64, 1.06]
Test for heterogeneity: Chi	² = 51.21, df = 3 (P < 0.00001), l ² = 94.1%			
Test for overall effect: Z =	1.51 (P = 0.13)			
	0.01	0.1 1 10	100	
	Favours	(Glar+OAD) Favours (N	VPH+OAD)	

CI=confidence interval; DM=diabetes mellitus; Glar/IGlar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; SE=standard error.

IGlar versus NPH (without OADs)

Nocturnal and overall hypoglycemia were reported in one study⁷⁴ for this comparison, while severe hypoglycemia was reported in a subgroup analysis of this study.⁷⁵ Most subjects in this study (>60%) used pre-meal regular human insulin.⁷⁴ Compared with NPH, treatment with IGlar produced statistically significant risk reduction for nocturnal hypoglycemia, but not for overall hypoglycemia (Table 18). RR for severe hypoglycemia was not calculated because there were no events in the IGlar arm. Data required for calculation of rate ratios were not reported in either the main or subgroup analyses.

Table 18: Summary of results for comparison of IGIar versus NPH in adult type 2 DM, in patients not receiving OADs* - RR of severe, nocturnal, and overall hypoglycemia

Type of Hypoglycemia	Analysis	No. of RCTs	Sample Size	RR (95% CI)
Severe	All RCTs	1	100	NE
Nocturnal	All RCTs	1	518	0.78 (0.62, 0.98)
Overall	All RCTs	1	518	0.92, (0.81, 1.05)

* Most subjects (>60%) also used regular human insulin for postprandial control in the single study that reported this comparison.⁷⁴ CI=confidence interval; DM=diabetes mellitus; IGIar=insulin glargine; NE=not estimable; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; RR=relative risk.

IDet versus NPH (in patients also treated with OADs)

Results of meta-analysis are presented in Table 19. Statistically significant risk reduction was observed in favour of IDet in terms of nocturnal and overall hypoglycemia (Figures 35 to 36). No significant difference was seen in severe hypoglycemia (Figure 34), although the event rate was very low in both studies. Rate ratios for each of the three categories of hypoglycemia significantly favoured IDet (Figures 37 to 38). Subgroup analysis by OAD was not possible, since all three studies used various OADs.

Table 19: Summary of results of meta-analyses for comparison of IDet versus NPH in adult type 2 DM, in patients also receiving OADs -Relative risk and rate ratio of severe, nocturnal, and overall hypoglycemia

Type of Analysis RR					Rate Ratio				
Hypo- glycemia		No. of RCTs	Sample Size	RR (95% CI)	² (%)	No. of RCTs	Sample Size	Rate Ratio (95% Cl)	² (%)
Severe	All RCTs	2	808	0.75 (0.03, 20.01)	68.8	1	463	0.13 (0.02, 0.91)	NA
Nocturnal	All RCTs	2	808	0.53 (0.31, 0.91)	51.6	3	1,161	0.48 (0.42, 0.55)	0
Overall	All RCTs	2	808	0.65 (0.39, 1.07)	82.1	3	1,161	0.59 (0.48, 0.72	86.9

CI=confidence interval; DM=diabetes mellitus; NA=not applicable; NPH=neutral protamine Hagedorn; OADs=oral antidiabetic agents; RCTs=randomized controlled trials; RR=relative risk.

Figure 34: Forest plot of all RCTs that examined the use of IDet+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – RR of severe hypoglycemia

Study or sub-category	Det+OAD n/N	NPH+OAD n/N	RR (random) 95% Cl	Weight %	RR (random) 95% Cl
Hermansen 2006	1/237	6/238		55.42	0.17 [0.02, 1.38]
Philis-Tsimikas 2006	2/169	0/164		44.58	4.85 [0.23, 100.32]
Total (95% CI) Total events: 3 (Det+OAD), 6 (Test for heterogeneity: Chi ² = : Test for overall effect: 7 = 0.1	406 (NPH+OAD) 3.20, df = 1 (P = 0.07), I ^z = 68 7 (P = 0.86)	402		100.00	0.75 [0.03, 20.01]
		0.0		0 1000	

Favours (Det+OAD) Favours (NPH+OAD)

CI=confidence interval; Det/IDet=insulin detemir; DM=diabetes mellitus; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; RR=relative risk.

Figure 35: Forest plot of all RCTs that examined the use of IDet+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – RR of nocturnal hypoglycemia

Study or sub-category	Det+OAD n/N	NPH+OAD n/N	RR (random) 95% Cl	Weight %	RR (random) 95% Cl
Hermansen 2006	71/237	112/238	+	70.10	0.64 [0.50, 0.81]
Philis-Tsimikas 2006	8/169	22/164	_ _	29.90	0.35 [0.16, 0.77]
Total (95% CI)	406	402	-	100.00	0.53 (0.31, 0.91)
Total events: 79 (Det+OAD), 1	34 (NPH+OAD)		-		
Test for heterogeneity: Chi2 =	2.07, df = 1 (P = 0.15), l ² = 51.6%				
Test for overall effect: Z = 2.2	9 (P = 0.02)				
			0.1 0.2 0.5 1 2	5 10	
			Favours (Det+OAD) Favours NPI	H+OAD)	

CI=confidence interval; Det/IDet=insulin detemir; DM=diabetes mellitus; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; RR=relative risk.

Figure 36: Forest plot of all RCTs that examined the use of IDet+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – RR of overall hypoglycemia

Favours (Det+OAD) Favours (NPH+OAD)

CI=confidence interval; Det/IDet=insulin detemir; DM=diabetes mellitus; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; RR=relative risk.

Figure 37: Forest plot of all RCTs that examined the use of IDet+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients - Rate ratio of nocturnal hypoglycemia

Study or sub-category	log[Rate Ratio] (SE)	Rate Ratio 95%	(random) 5 Cl	Weight %	Rate Ratio (random) 95% Cl	
Hermansen 2006	-0.7752 (0.0937)	+		51.93	0.46 [0.38, 0.55]	
Philis-Tsimikas 2006	-0.9357 (0.2719)	_		6.17	0.39 [0.23, 0.67]	
Tajima 2006	-0.6286 (0.1043)	-		41.91	0.53 [0.43, 0.65]	
Total (95% Cl)		•		100.00	0.48 [0.42, 0.55]	
Test for heterogeneity: Chi2	= 1.74, df = 2 (P = 0.42), l ² = 0%					
Test for overall effect: Z = 1	0.72 (P < 0.00001)					
		0.1 0.2 0.5 1	2 5	5 10		
		Favours Det + OAD	Favours NPH	+ OAD		

CI=confidence interval; DM=diabetes mellitus; Det/IDet=insulin detemir; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; SE=standard error.

Figure 38: Forest plot of all RCTs that examined the use of IDet+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Rate ratio of overall hypoglycemia

Study or sub-category	log[Rate Ratio] (SE)	Rate Ratio (random) 95% Cl	Weight %	Rate Ratio (random) 95% Cl
Hermansen 2006	-0.6183 (0.0404)		38.89	0.54 [0.50, 0.58]
Philis-Tsimikas 2006	-0.6538 (0.1369)		24.05	0.52 [0.40, 0.68]
Tajima 2006	-0.3593 (0.0548)	-	37.06	0.70 [0.63, 0.78]
Total (95% Cl)		•	100.00	0.59 [0.48, 0.72]
Test for heterogeneity: Chi ² Test for overall effect: Z = 5	= 15.28, df = 2 (P = 0.0005), l² = 86.9% 5.11 (P < 0.00001)	•		
	0.1	0.2 0.5 1 2 5	; 10	
	Favo	urs Det + OAD Favours NPH	+ OAD	

CI=confidence interval; Det/IDet=insulin detemir; DM=diabetes mellitus; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; SE=standard error.

There was a high degree of heterogeneity in all three meta-analyses of RR (l^2 =68.8%, 51.6% and 82.1% for severe, nocturnal, and overall hypoglycemia, respectively), as well as in the meta-analysis of overall hypoglycemia rate ratio (l^2 = 86.9%). A possible cause for heterogeneity in RRs may lie in the fact that one study administered both IDet and NPH once daily,⁷⁰ while the other administered them twice daily.⁶⁹ The RRs observed in the former study for both nocturnal and overall hypoglycemia were smaller than those reported in the latter. (RR for severe hypoglycemia was not calculable for the once-daily study, since no such events were observed in the NPH arm.⁷⁰)

IDet versus NPH (with bolus insulin)

No significant differences in nocturnal and overall hypoglycemia risks were observed between IDet and NPH in the single trial identified for this comparison⁶⁸ (Table 20). This study treated patients with IAsp as pre-meal bolus insulin. There were insufficient data to calculate rate ratios.

 Table 20: Summary of results for comparison of IDet versus NPH in adult type 2 DM, in patients receiving

 IAsp as pre-meal insulin – RR of severe, nocturnal, and overall hypoglycemia

Type of Hypoglycemia	Analysis	No. of RCTs	Sample Size	RR (95% CI)
Severe	All RCTs	0	NA	NA
Nocturnal	All RCTs	1	505	0.66 (0.45, 0.96)
Overall	All RCTs	1	505	0.91 (0.75, 1.11)

CI=confidence interval; DM=diabetes mellitus; IAsp=insulin aspart; IDet=insulin detemir; NA=not applicable; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

IDet+IAsp versus NPH+HI

Results are presented in Table 21. There was no statistically significant difference between treatments in terms of RR of severe or overall hypoglycemia in the single RCT that compared these interventions, although there was a significant difference in favour of detemir in terms of nocturnal hypoglycemia [RR (95% CI)=0.54 (0.30, 0.97)].^{71,92} In terms of rate ratios, a statistically significant benefit was observed for both nocturnal hypoglycemia [rate ratio (95% CI)=0.61 (0.43, 0.87)] and overall hypoglycemia [rate ratio (95% CI)=0.85 (0.73, 0.98)].

 Table 21: Summary of results for comparison of IDet+IAsp versus NPH+HI in adult type 2 DM: RR and rate ratio of severe, nocturnal, and overall hypoglycemia

Type of	Analysis	RR			Rate Ratio		
Hypoglycemia		No. of RCTs	Sample Size	RR (95% CI)	No. of RCTs	Sample Size	Rate Ratio (95% Cl)
Severe	All RCTs	1	394	1.02 (0.26, 4.02)	1	394	0.51 (0.09, 2.79)
Nocturnal	All RCTs	1	394	0.54 (0.30, 0.97)	1	394	0.53 (0.39, 0.73)
Overall	All RCTs	1	394	0.87 (0.55, 1.37)	1	394	0.85 (0.73, 0.98)

CI=confidence interval; DM=diabetes mellitus; HI=human insulin; IAsp=insulin aspart; IDet=insulin detemir; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk.

IDet versus IGlar

Rosenstock *et al.*, 2006a⁷³ reported the RR of nocturnal and overall hypoglycemia in patients treated with either IDet or IGlar, in combination with OADs. The RR of nocturnal hypoglycemia was 1.05 (p>0.05, NS), and RR of overall hypoglycemia was 0.94 (p>0.05, NS). There were insufficient data to calculate rate ratios.

The study comparing IDet with IGlar in patients treated with pre-meal IAsp did not report hypoglycemia data, although the authors noted that there was no significant difference in the risk of hypoglycemia.⁷²

Long-acting insulin analogues versus OADs

No statistically significant difference was found in the risk of severe or overall hypoglycemia in studies comparing IGlar with TZDs, however, the risk of nocturnal hypoglycemia was significantly higher in the IGlar arm [RR (95% Cl)=2.6 (1.40, 4.83)] (Table 22, Figures 39 to 40). In subgroup analysis, the risk of hypoglycemia in the rosiglitazone and pioglitazone studies varied widely (RR=0.54 and 6.31), although both were non-significant. The large difference between the two studies caused a high degree of heterogeneity (l²=74%). The pioglitazone study also demonstrated a higher RR than rosiglitazone in terms of overall hypoglycemia, hence the large l² value for this outcome. There were insufficient data to calculate rate ratios.

Type of Hypoglycemia	Analysis	No. of RCTs	Sample Size	RR (95% CI)
Severe	All RCTs	2 389 1.63 (0.14, 18.		1.63 (0.14, 18.87)
	Subgroup analysis by TZD			
	TZD=Pio	1	173	6.31 (0.79, 50.18)
	TZD=Ros	1	216	0.54 (0.14, 2.10)
Nocturnal	All RCTs	1	206	2.6 (1.40, 4.83)
	(TZD=Ros)			
Overall	All RCTs	3	624	1.73 (0.83, 3.58)
	Subgroup analysis by TZD			
	TZD=Pio	1	388	2.76 (1.96, 3.88)
	TZD=Ros	2	236	1.29 (0.98, 1.71)

Table 22: Summary of results of meta-analyses for comparison of IGlar with TZDs in adult type 2 DM – RR of severe, nocturnal, and overall hypoglycemia

CI=confidence interval; DM=diabetes mellitus; Pio=pioglitazone; RCTs=randomized controlled trials; Ros=rosiglitazone; RR=relative risk; TZD=thiazolidinedione.

Figure 39: Forest plot of all RCTs that examined the use IGlar versus OAD for the treatment of type 2 DM in adult patients – RR of severe hypoglycemia

Study or sub-category	Glar n/N	Rosi n/N	RR (random) 95% Cl	Weight %	RR (random) 95% Cl	
Meneghini 2005	7/91	1/82		44.95	6.31 [0.79, 50.18]	
Rosenstock 2006b	3/104	6/112		55.05	0.54 [0.14, 2.10]	
Total (95% CI)	195	194		100.00	1.63 [0.14, 18.87]	
Total events: 10 (Glar), 7 (Rosi)			_			
Test for heterogeneity: Chi ² = 3.95	5, df = 1 (P = 0.05), l ² = 74.3	7%				
Test for overall effect: Z = 0.39 (F	P = 0.70)					
		0.0		1000		
Favours Clar - Favours Rosi						

Heterogeneity I² describes the heterogeneity between the included studies. CI=confidence interval; DM=diabetes mellitus; Glar/IGlar=insulin glargine; OAD=oral antidiabetic (thiazolidinediones); RCTs=randomized controlled trials; Rosi=rosiglitazone; RR=relative risk.

Figure 40: Forest plot of all RCTs that examined the use IGlar versus OAD for the treatment of type 2 DM in adult patients – RR of overall hypoglycemia

Heterogeneity l² describes the heterogeneity between the included studies. CI=confidence interval; DM=diabetes mellitus; Glar/IGIar=insulin glargine; OAD=oral antidiabetic (thiazolidinediones); RCT=randomized controlled trial; RR=relative risk.

e) Body mass index

IGlar versus NPH

Two studies^{76,79} reported mean BMI at endpoint in patients treated with IGIar versus NPH, as well as sulfonylureas (Appendix 12b). The pooled estimate did not reveal a statistically significant difference between treatments (Figure 41, Table 23). One RCT⁸⁹ reported mean BMI at endpoint for the comparison of IGIar versus rosiglitazone; no significant difference was observed (Table 23). BMI data were not reported for the remaining comparisons.

Figure 41: Forest plot of all RCTs that examined the use of IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – BMI, WMD

Study or sub-category	N	(Glar+SU) Mean (SD)	N	(NPH+SU) Mean (SD)	VVMD (random) 95% Cl	Weight %	VVMD (random) 95% Cl
Pan 2007 Wang 2007	220 16	26.20(3.10) 24.70(2.40)	223 8	26.39(3.30) 24.90(2.30)		91.69 8.31	-0.19 [-0.79, 0.41] -0.20 [-2.18, 1.78]
Total (95% Cl) 236 231 ♦ 100.00 -0.15 Test for heterogeneity: Ch ² = 0.00, df = 1 (P = 0.99), P = 0% Test for overall effect: Z = 0.66 (P = 0.51)						-0.19 [-0.76, 0.38]	
-10 -5 0 5 10 Favours (Glar+SU) Favours (NPH+SU)							

BMI=body mass index;CI=confidence interval; DM=diabetes mellitus; Glar/IGlar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; SD=standard deviation; Sfu=sulfonylurea; RCTs=randomized controlled trials; WMD=weighted mean difference.

Table 23: Summary of results of meta-analysis for comparison of long-acting insulin analogues with NPH or TZDs in adult type 2 DM – BMI

Comparison	Analysis	No. of Trials	Sample Size	WMD (95% Cl) in BMI (kg/m²)	l² (%)
Glargine vs. NPH (with Sfu)	All RCTs	2	467	-0.19 (-0.76, 0.38)	0
Glargine vs. rosiglitazone	All RCTs	1	20	-0.50 (-4.11, 3.11)	NA

BMI=body mass index; CI=confidence interval; DM=diabetes mellitus; NA=not applicable; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; Sfu=sulfonylurea; TZDs=thiazolidinediones; WMD=weighted mean difference.

f) Body weight

The results of meta-analysis for body weight are summarized in Table 24. Study-level data are shown in Appendix 12b.

IGlar versus NPH (in patients also treated with OADs)

Seven RCTs⁷⁸⁻⁸⁴ reported body weight data for this comparison. Overall, there was no significant difference between treatments (Figure 42, Table 24). Similar results were obtained in sensitivity analysis when the two studies that only reported mean body weight change from baseline,^{78,80} instead of mean weight at endpoint, were excluded. Results were also similar and statistically non-significant in subgroups defined by OAD. However, the point estimate, although non-significant, was -3.3 kg/m² in favour of IGIar in the single study that used metformin. There was no heterogeneity (I^2 =0%) in the overall analysis. Publication bias was unlikely based on analysis of the funnel plot (Appendix 14, see Figure 18)
Figure 42: Forest plot of all RCTs that examined the use of IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients - Body weight (change from baseline or mean at endpoint), WMD

Study or sub-category	N	(Glar+OAD) Mean (SD)	N	(NPH+OAD) Mean (SD)	VMD (random) 95% Cl	Weight %	WMD (random) 95% Cl
Yki-Järvinen 2000	214	2.57(3.36)	208	2.34(3.32)	_ 	20.35	0.23 [-0.41, 0.87]
Fritsche 2003	227	85.80(13.60)	232	83.90(14.90)		→ 1.21	1.90 [-0.71, 4.51]
HOE 2003	64	0.31(4.69)	68	0.68(4.69)		3.22	-0.37 [-1.97, 1.23]
Massi 2003	289	2.01(2.80)	281	1.88(2.80)	_ _	39.10	0.13 [-0.33, 0.59]
Riddle 2003	367	3.00(3.83)	389	2.80(3.94)	_ _	26.93	0.20 [-0.35, 0.75]
Yki-Järvinen 2006	61	94.60(18.74)	49	97.90(18.20)	←	0.17	-3.30 [-10.23, 3.63]
Wang 2007	16	1.47(1.04)	8	1.20(1.17)	_	9.01	0.27 [-0.69, 1.23]
Fotal (95% CI)	1238		1235		•	100.00	0.18 [-0.11, 0.47]
Fest for heterogeneity: Chi2	= 3.20, df = 6 (P	= 0.78), l² = 0%			Ť		
Test for overall effect: Z = '	1.24 (P = 0.22)						
					-4 -2 0 2	4	
					Favours (Glar+OAD) Eavours (NE	H+OAD)	

CI=confidence interval; DM=diabetes mellitus; Glar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; SD=standard deviation; WMD=weighted mean difference.

IGlar versus NPH (in patients not treated with OADs)

The only study reporting this comparison⁷⁴ found a non-significant difference in body weight between treatments (Table 24). Most subjects in this study (>60%) also used pre-meal regular human insulin.

IDet versus NPH (in patients also treated with OADs)

Three RCTs^{69,70,91} reported weight change from baseline for the comparison of IDet with NPH in patients also using OADs. The pooled estimate revealed that there was significantly less weight gain in the IDet arm [WMD (95% CI) = -0.96 kg (-1.69, -0.23)] (Figure 43, Table 24). There was a high degree of heterogeneity in this analysis (I²=82.0%). The main difference between the RCTs was that insulins were administered twice daily in one study⁶⁹ and once daily in the other two studies.^{70,91} Subgroup analysis by OAD was not possible since various agents were allowed in all three studies.

Figure 43: Forest plot of all RCTs that examined the use of IDet+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Change in body weight from baseline, WMD

					r me (ranaomy	* YOIGHL	www.cranuomy
or sub-category	N	Mean (SD)	N	Mean (SD)	95% CI	%	95% CI
Hermansen 2006	226	1.20(2.80)	223	2.80(2.80)		33.82	-1.60 [-2.12, -1.08]
Philis-Tsimikas 2006	169	0.70(2.80)	164	1.60(2.80)		31.93	-0.90 [-1.50, -0.30]
Tajima 2006	180	61.26(2.41)	183	61.64(2.43)	-	34.26	-0.38 [-0.88, 0.12]
íotal (95% Cl)	575		570		-	100.00	-0.96 [-1.69, -0.23]
fest for heterogeneity: Chi ² = 11.1	1, df = 2(I)	^o = 0.004), l ² = 82.0%					
rest for overall effect: Z = 2.57 (P	= 0.01)						

CI=confidence interval; Det/IDet=insulin detemir; DM=diabetes mellitus; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; SD=standard deviation; WMD=weighted mean difference.

Statistically significant differences in weight favouring IDet were also found in comparisons of IDet versus NPH (with pre-meal IAsp),⁶⁸ IDet+IAsp versus NPH+human insulin,⁷¹ IDet versus IGIar (with OADs),⁷³ and IDet versus IGIar (with pre-meal IAsp)⁷² (Table 24).

IGlar versus TZDs

Two RCTs,^{88,89} both of which studied rosiglitazone, reported weight change from baseline for this comparison. A significantly greater reduction in weight from baseline was observed with IGlar [WMD (95% CI)=-1.45 kg (-2.48, -0.42)] (Figure 44, Table 24). There was no heterogeneity in this result.

Table 24: Summary of results of meta-analysis for comparison of long-acting insulin analogues
with NPH or TZDs in adult type 2 DM – Body weight

Comparison	Analysis	No. of	Sample	Random Effect Model	
		RCTs	Size	WMD (95% Cl) in Body Weight (kg)	l² (%)
IGlar vs. NPH (with OADs)	All RCTs	7	2,473	0.18 (-0.11, 0.47)	0
	Sensitivity analysis	·			
	Removal of RCTs only reporting mean change from baseline	2	569	0.33 (-4.34, 5.01)	47.2
	Subgroup analysis				
	OAD=Sfu	2	483	0.61 (-0.69, 1.92)	24.3
	OAD=MF	1	110	-3.30 (-10.23, 3.63)	NA
	OAD=var	4	1,880	0.16 (-0.15, 0.46)	0
IGlar vs. NPH (without OADs)*	All RCTs (mean weight at endpoint)	1	518	-2.10 (-5.21, 1.01)	NA
IDet vs. NPH (with various OADs)	All RCTs (change in weight from baseline)	3	1,145	-0.96 (-1.69, -0.23)	82.0
IDet vs. NPH (with pre-meal IAsp)	All RCTs (change in weight from baseline)	1	505	-0.80 (-1.46, -0.14)	NA
IDet+IAsp vs. NPH+HI	All RCTs (change in weight from baseline)	1	394	-0.62 (-1.22, -0.02)	NA
IDet vs. IGlar (with various OADs)	All RCTs (change in weight from baseline)	1	582	-0.80 (-1.52, -0.08)	NA
IDet vs. IGlar (with pre-meal IAsp)	All RCTs (change in weight from baseline)	1	385	-1.50 (-2.47, -0.53)	NA
IGlar vs. rosiglitazone	All RCTs (change in weight from baseline)	2	236	-1.45 (-2.48, -0.42)	0

* Most subjects (>60%) also used regular human insulin for postprandial control in the single study that reported this comparison.⁷⁴ CI=confidence interval; DM=diabetes mellitus; IAsp=insulin aspart; IDet=insulin detemir; IGIar=insulin glargine; MF=metformin; NA=not applicable; NPH=neutral protamine Hagedorn; OADs=oral antidiabetic drugs; RCTs=randomized controlled trials; Sfu=sulfonylurea; TZDs=thiazolidinediones; var=various; vs.=versus; WMD=weighted mean difference.

Figure 44: Forest plot of all RCTs that examined the use of IGIar versus OAD for the treatment of type 2 DM in adult patients – Body weight gain, WMD

Study or sub-category	N	Glar Mean (SD)	N	Rosi Mean (SD)		WMD (random) 95% Cl	VVeight %	WMD (random) 95% Cl
Rosenstock 2006b Triplitt 2006	104 10	1.70(4.08) 2.30(3.16)	112 10	3.00(4.23) 4.70(3.16)			86.20 13.80	-1.30 [-2.41, -0.19] -2.40 [-5.17, 0.37]
Total (95% Cl) Test for heterogeneity: Chi² = Test for overall effect: Z = 2.3	114 0.52, df = 1 (P = 77 (P = 0.006)	= 0.47), I ² = 0%	122		-	-	100.00	-1.45 [-2.48, -0.42]
					-4 -	-2 0	2 4	

Heterogeneity I² describes the heterogeneity between the included studies. CI=confidence interval; DM=diabetes mellitus; Glar/IGlar=insulin glargine; OAD=oral antidiabetic agent (thiazolidinediones); RCT=randomized controlled trial; Rosi=rosiglitazone; SD=standard deviation; WMD=weighted mean difference.

g) Diabetic ketoacidosis

No studies reported data on this outcome.

h) Hyperosmolar, hyperglycemic, non-ketotic coma

No studies reported data on this outcome.

i) Blood pressure

Study-level data on blood pressure are presented in Appendix 17. One study⁸⁴ reported no significant difference between IGIar and NPH (in patients also treated with OADs) in terms of systolic and diastolic blood pressure. Triplitt *et al.*⁸⁹ reported that there was no significant difference between IGIar and rosiglitazone in terms of systolic blood pressure, although diastolic blood pressure was significantly higher in the IGIar arm. Data from these two studies are presented in Table 25. There was no blood pressure data reported for the remaining comparisons.

j) LDL-cholesterol

Study-level data on cholesterol are presented in Appendix 18. Two studies^{80,84} reported data on LDL-cholesterol for the comparison of IGlar versus NPH (in patients also treated with OADs). There was no significant difference between the two treatments (Figure 45, Table 26). The individual estimates from the two studies, one of which used metformin,⁸⁰ and the other various OADs⁸⁴ were similar to the overall estimate and also non-significant. There was no heterogeneity in the overall result.

Comparison	Analysis	No. of RCTs	Sample Size	WMD (95% CI) in Blood Pressure (mmHg)
IGlar vs. NPH	Systolic blood pressure	1	422	0.00 (-2.77, 2.77)
(with OADs)	Diastolic blood pressure	1	422	1.00 (-1.77, 3.7)
IGlar vs. rosiglitazone	Systolic blood pressure	1	20	0.00 (-12.55, 12.55)
	Diastolic blood pressure	1	20	10 (0.20, 19.8)

 Table 25: Summary of results for comparison of long-acting insulin analogues

 with NPH or TZDs in adult type 2 DM – Blood pressure

CI=confidence interval; DM=diabetes mellitus; IGIar=insulin glargine; NPH=neutral protamine Hagedorn; OADs=oral antidiabetic drugs; RCTs=randomized controlled trials; TZDs=thiazolidinediones; vs.=versus; WMD=weighted mean difference. **Figure 45:** Forest plot of all RCTs that examined the use of IGIar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – LDL cholesterol, WMD

Study or sub-category	N	(Glar+OAD) Mean (SD)	N	(NPH+OAD) Mean (SD)	WMD (fixed) 95% Cl	Weight %	VVMD (fixed) 95% Cl
Yki-Järvinen 2000 Yki-Järvinen 2006	214 61	3.21(0.88) 2.81(0.78)	208 49	3.27(1.15) 2.90(0.70)		66.69 33.31	-0.06 [-0.26, 0.14] -0.09 [-0.37, 0.19]
Total (95% Cl) Test for heterogeneity: Chi² Test for overall effect: Z = 0	275 = 0.03, df = 1 (P = 1.86 (P = 0.39)	= 0.86), I ^z = 0%	257		+	100.00	-0.07 [-0.23, 0.09]
					-1 -0.5 0 0.5	1	

Favours (Glar+OAD) Favours (NPH+OAD)

CI=confidence interval; DM=diabetes mellitus; Glar/IGIar=insulin glargine; LDL=low-density lipoprotein; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; SD=standard deviation; WMD=weighted mean difference.

Table 26: Summary of results of meta-analysis for comparison of long-acting insulin analogues with NPH or TZDs in adult type 2 DM – LDL-cholesterol

Comparison	Analysis	No. of RCTs	Sample Size	WMD (95% Cl) in LDL- cholesterol (mmol/L)	l² (%)
IGlar vs. NPH	All RCTs	2	532	-0.07 (-0.23, 0.09)	0
(with OADs)	Subgroup analysis by OAD				
	OAD=var	1	422	-0.06 (-0.26, 0.14)	NA
	OAD=MF	1	110	-0.09 (-0.37, 0.19)	NA
lGlar vs. rosiglitazone	All RCTs	2	236	-0.52 (-1.37, 0.33)	87.6

CI=confidence interval; DM=diabetes mellitus; LDL=low-density lipoprotein; MF=metformin; NA=not applicable; NPH=neutral protamine Hagedorn; OADs=oral antidiabetic drugs; RCTs=randomized controlled trials; TZDs=thiazolidinediones; var=various; vs.=versus; WMD=weighted mean difference.

Two RCTs^{88,89} reported LDL-cholesterol data for the comparison of IGlar with rosiglitazone. The pooled estimate did not reveal a significant difference between treatments (Figure 46, Table 26). There was a high degree of heterogeneity in this analysis (I²=88%). One of the studies, a trial enrolling only 20 patients, reported a statistically significant difference in favour of IGlar of 1 mmol/L, while the other, larger trial reported a non-significant difference of 0.13 mmol/L in favour of IGlar. Since there were no obvious methodological or population differences between these studies, the observed variation in effect size may have been due to chance effect.

Figure 46: Forest plot of all RCTs that examined the use IGlar versus OAD for the treatment of type 2 DM in adult patients – LDL cholesterol, WMD

Study or sub-category	N	Glar Mean (SD)	N	Rosi Mean (SD)	VVME S) (random) 95% Cl	Weight %	WMD (random) 95% Cl
Rosenstock 2006b Triplitt 2006	104 10	2.95(0.57) 2.64(0.57)	112 10	3.08(0.73) 3.64(0.73)		\$	55.15 44.85	-0.13 [-0.30, 0.04] -1.00 [-1.57, -0.43]
Total (95% Cl) Test for heterogeneity: Chi² Test for overall effect: Z = 1	114 = 8.08, df = 1 (P = .20 (P = 0.23)	= 0.004), I² = 87.6%	122			•	100.00	-0.52 [-1.37, 0.33]
					-100 -50 Favours Gla	0 50 ar Favours Ro:	100 si	

Heterogeneity I² describes the heterogeneity between the included studies. CI=confidence interval; DM=diabetes mellitus; Glar/IGIar=insulin glargine; LDL=low-density lipoprotein; OAD=oral antidiabetic (thiazolidinediones); RCTs=randomized controlled trials; Rosi=rosiglitazone; SD=standard deviation; WMD=weighted mean difference.

LDL-cholesterol data were not reported for the remaining comparisons.

k) Generic or diabetes-related quality-of-life

Study level quality-of-life data are presented in Appendix 15b. In the comparison of IGIar versus TZDs, two RCTs^{86,90} reported this outcome. To measure diabetes-related HRQoL, Oster *et al.*, 2006⁸⁶ used the Diabetes Symptom Checklist-Revised (DSC-R) and the Emotional Well-being and General Health Perceptions scales from the 36-item Short Form Health Survey (SF-36). The DSC-R contains 34 items grouped into eight symptom subscales: hyperglycemia, hypoglycemia, psychological cognitive functioning, psychological fatigue, cardiovascular functioning, neuropathic pain, neuropathic sensory, and ophthalmologic functioning. The degree to which each symptom is bothersome to the patient is scored on a scale of 1 to 5. HRQoL changes from baseline to 48 weeks generally favoured IGlar, which demonstrated statistically significant improvement over pioglitazone in the following domains: hyperglycemia distress, fatigue distress, and total distress. Vinik and Zhang, 2007⁹⁰ also used the 34-item DSC-R as well as the five mental health items and the single general health perception rating from the SF-36. In this study, HROoL improved in both treatment arms, but IGIar-treated subjects experienced significantly greater improvement in terms of the total symptom score (-5.67 in IGIar arm versus -1.15 in rosiglitazone arm at 24 weeks, p=0.005) and the total symptom distress score (-2.81 in IGIar arm versus -1.06 in rosiglitazone arm at 24 weeks, p=0.03). Significantly greater improvements were also observed in terms of mood symptoms, ophthalmologic symptoms, ophthalmologic distress, and fatigue distress. There was also a statistically significant difference in favour of IGIar in terms of the single-item general health perception rating (difference in change from baseline=5.38, p<0.05).

HRQoL data were not reported for the other comparisons.

I) Satisfaction with diabetes treatment

Eliaschewitz *et al.*, 2006⁷⁷ reported a significantly greater improvement from baseline in the Diabetes Treatment Satisfaction Questionnaire Change (DTSQc) score with IGlar versus NPH (in patients also treated with OADs) (Appendix 15b). No other studies reported data on treatment satisfaction.

m) Patient self-management

No studies reported data related to this outcome.

o) Resource utilization

No studies reported resource utilization data.

p) Long-term diabetic complications

No RCTs listed long-term complications such as mortality, cardiovascular disease, or retinopathy as outcomes of interest. However, some studies reported the incidence of such events. In all cases, the number of events observed was too small for adequate comparisons to be made. Study-level data on these events are presented in Appendix 13b ["Adverse Events Data (excluding hypoglycemia) for RCTs in Type 2 DM"].

Non-fatal ischemic heart disease: Two RCTs^{77,83} reported the outcome of non-fatal ischemic heart disease for IGIar versus NPH (in patients also treated with OADs). The pooled estimate did not reveal a statistically significant difference between treatments (Figure 47, Table 27). Individual estimates in the two studies, one of which used sulfonylureas,⁷⁶ and the other, various OADs,⁸³ were also non-significant. There was no heterogeneity.

There were no data for this outcome for the remaining comparisons.

Figure 47: Forest plot of all RCTs that examined the use of IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – Non-fatal MI

Study or sub-category	Glar+OAD n/N	NPH+OAD n/N	RR (r 95	andom) % Cl	Weight %	RR (random) 95% Cl
HOE 2003 Pan 2007	1/64 3/221	0/68 2/223		• •	23.82 76.18	3.18 [0.13, 76.78] 1.51 [0.26, 8.97]
Total (95% Cl) Total events: 4 (Glar+OAD),	285 2 (NPH+OAD)	291			100.00	1.81 [0.38, 8.54]
Test for heterogeneity: Chi ²	= 0.16, df = 1 (P = 0.69), l ² = 0%					
Test for overall effect. Z = t	5.75 (P = 0.48)					
			0.1 0.2 0.5	i ż	5 10	
			Favours (Glar+OAD)	Favours (NP	H+OAD)	

CI=confidence interval; DM=diabetes mellitus; Glar/IGIar=insulin glargine; MI=myocardial infarction; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; RR=relative risk.

Table 27: Summary of results of meta-analysis for comparison of IGlar versus NPH in adult type 2 DM – Risk of non-fatal ischemic heart disease

Comparison	Analysis	No. of RCTs	Sample size	RR (95% CI)	l² (%)
IGlar vs. NPH (with OADs)	All RCTs	2	576	1.81 (0.38, 8.54)	0
	Subgroup analysis by OAD				
	OAD=Sfu	1	444	1.51 (0.26, 8.97)	NA

CI=confidence intervals; DM=diabetes mellitus; IGIar=insulin glargine; NA=not applicable; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; RR=relative risk; Sfu=sulfonylurea.

Neuropathy: Only one study⁷⁶ reported the outcome of neuropathy in the comparison of IGlar versus NPH (in patients also treated with OADs). One patient with neuropathy was reported in the IGlar arm and none in the NPH arm. No data on neuropathy were reported for other comparisons.

Retinopathy: Only one study⁷⁶ reported the outcome of retinopathy in the comparison of IGlar versus NPH (in patients also treated with OADs). One patient with retinopathy was reported in the IGlar arm and none in the NPH arm. No data on retinopathy were reported for the remaining comparisons.

Mortality: Study-level mortality data are presented in Appendix 16b. Three RCTs^{77,78,83} reported that there were no deaths in either IGIar or NPH arms (in patients also treated with OADs). Philis-Tsimikas *et al.*⁷⁰ reported one death in each arm in the comparison of IDet versus NPH (in patients also treated with OADs). Both deaths were due to cerebrovascular accident. Raslova *et al.*⁷¹ reported one death in each arm in the comparison of detemir+aspart versus NPH+HI. It was indicated that the cause of death was unknown and considered unrelated to study treatments. There was no data on mortality for the remaining comparisons.

q) Adverse events (excluding hypoglycemia)

Eighty-three percent of trials selected for adult type 2 DM reported data on adverse events. Studylevel details regarding the adverse reactions observed are presented in Appendix 13b. The most commonly reported adverse events with the treatment of long-acting insulin analogues were local allergic reactions, respiratory tract infections, gastrointestinal disorders, edema, rhinitis, and headache. Similar events were also reported with NPH. No systemic allergic reactions associated with insulin treatment were reported. Overall, there was no apparent difference in the adverse event profiles of the long-acting insulin analogues compared with NPH, except that injection-site reactions were more common with IGlar.

7.4.5 Early versus late initiation of long-acting analogues

No studies compared initiation of long-acting insulin analogues early versus late in the course of disease.

8 **DISCUSSION**

8.1 Type 1 DM

8.1.1 Pediatric population

In the comparison of IGlar with NPH for the treatment of type 1 DM in children and adolescents, there were no significant differences between treatments in terms of A1c and severe, nocturnal, and overall hypoglycemia. Within subgroups defined by the type of bolus insulin used in each treatment arm, the single study that used insulin aspart reported the largest mean difference in A1c between treatments and was the only study to demonstrate a statistically significant A1c effect in favour of IGlar.³¹ However, this study also differed from the others in that it was conducted in a Japanese population and enrolled subjects as old as 21 years of age.³¹ It is therefore difficult to ascertain whether glargine is truly more effective than NPH in terms of A1c reduction when aspart is used as bolus insulin. RRs for each type of hypoglycemia were statistically non-significant in all bolus insulin subgroups, as were rate ratios. No data were available on health-related quality-of-life, patient satisfaction, long-term diabetes-related complications, or mortality.

A single study also evaluated the combination of IGIar and ILis versus NPH insulin and regular human insulin.³⁶ Similar to the glargine studies in which the same bolus insulin was used in both treatment arms, no significant differences were observed in terms of A1c or hypoglycemia.

In the single RCT that compared insulin detemir with NPH insulin, there were no significant differences between treatments in terms of A1c and severe hypoglycemia.³⁰ However, in terms of nocturnal hypoglycemia, there was a 15% reduction in risk and a 23% reduction in the rate of this outcome. There was also a small (11%) reduction in the rate of overall hypoglycemia but no significant reduction in the risk of this outcome. The study did not evaluate health-related quality-of-life, patient satisfaction, diabetes-related complications, or mortality. It should be noted that the bolus insulin used in this study was aspart; whether similar results would be obtained with ILis or regular HI remains unknown.

The methodological quality of the available evidence was generally poor; studies were not blinded, and allocation concealment was unclear in most reports. The former aspect is perhaps most problematic in terms of the assessment of hypoglycemia, since this outcome was usually self-assessed by subjects based on symptoms. The possibility of a spurious result in favour of IDet due to ascertainment bias cannot, therefore, be entirely discounted.

In summary, there is little evidence that IGIar offers benefit over NPH insulin in children or adolescents with type 1 DM. On the other hand, there is evidence from one study that insulin IDet may be associated with a modest reduction in the risk and frequency of nocturnal hypoglycemia, although further studies are required to confirm these observations. This potential benefit of IDet may be an important consideration in the choice of a basal insulin, especially in patients who experience frequent nocturnal hypoglycemia, since this adverse event often goes undetected and can be more likely to cause seizures than hypoglycemia that occurs during the day.²

An important limitation of the available data is that all studies enrolled patients five years of age or older, therefore data on pre-school-aged children is lacking. Also, the available studies on both IGlar and IDet reported only clinical endpoints; data on quality-of-life, treatment preference, satisfaction with treatment, and health care resource utilization are lacking. Further study is therefore needed to quantify any possible benefits of the long-acting analogues in terms of these outcomes. Studies are also required to evaluate long-term safety and efficacy in terms of avoidance of diabetes-related complications.

8.1.2 Adult population

In the comparison of insulin glargine with NPH insulin for adults with type 1 DM, no significant differences were observed between treatments in terms of severe, nocturnal, or overall hypoglycemia. A statistically significant benefit of 0.11% was observed in favour of glargine in terms of A1c, however, there was evidence of publication bias, since three smaller studies demonstrated unexpectedly large effect sizes. In subgroup analysis by bolus insulin, a significant A1c benefit was observed for both IAsp and ILis but not for regular human insulin. Significant heterogeneity that could not be readily explained by population or methodological differences across studies remained in the ILis subgroup. It is noteworthy that the largest study in this subgroup reported no significant difference between treatments.⁵⁹

In terms of severe hypoglycemia, none of the bolus subgroups had a significant reduction in risk. Similar results were obtained for severe hypoglycemia rate ratios with the exception of the human insulin subgroup, in which the single study available demonstrated a statistically significant rate ratio of 0.47. Nocturnal hypoglycemia RRs were also not significant in the ILis and HI subgroups; no studies reported this outcome for insulin aspart. In terms of nocturnal hypoglycemia rate ratio, data were available only for ILis; no significant difference between treatments was observed in the pooled rate ratio. However, a significant degree of heterogeneity remained such that two studies demonstrated statistically significant rate ratios of 0.4 to 0.5 in favour of IGIar,^{61,62} one a nonsignificant rate ratio near unity,⁶⁰ and the largest study in this subgroup demonstrated a statistically significant rate ratio of 1.12 that favoured NPH.⁵⁹ These differences may have been due to variations in the definition of nocturnal hypoglycemia. In terms of overall hypoglycemia, no significant differences were observed within the three bolus subgroups. Although significant heterogeneity was observed in the HI and ILis subgroups, each of the studies within these subgroups demonstrated a non-significant RR. Rate ratios were only calculable for two studies, both in the lispro subgroup; however, significant heterogeneity was observed. This may have been due to the use of a more stringent definition of overall hypoglycemia (i.e., one based on blood glucose measurement rather than symptoms alone) in the study that reported a statistically significant result in favour of IGlar.

Other notable results from the studies comparing IGlar with NPH in adult type 1 diabetics were a slight but statistically significant reduction in weight and a statistically significant difference in favour of IGlar in terms of satisfaction with treatment as measured by the DTSQ. There was also a significant difference in terms of HRQoL as measured by change in the W-BQ General Well-being score from baseline, although there was no significant difference in mean values at endpoint. The treatment satisfaction and HRQoL results were reported in a single study in which human insulin was used as bolus insulin.⁵⁸ Although both the DTSQ and Well-being Questionnaire are validated scales,^{58,97} the clinical significance of the observed differences is unclear.

A single study comparing the combination of insulin glargine with insulin lispro versus NPH insulin and human insulin was also identified.⁶⁴ This was a crossover study that did not demonstrate significant differences between treatments according to any measure except rate ratio for nocturnal hypoglycemia. Aic data from this crossover study were not interpretable since there was evidence of a sequence effect for this outcome.

In the comparison of IDet versus NPH insulin, all trials used either human insulin or insulin aspart as bolus. No significant difference between treatments was observed in terms of A1c; this was also true for the bolus insulin subgroups. The risks for severe and nocturnal hypoglycemia were significantly reduced in the detemir arm, although the risk of overall hypoglycemia was not. The significant reductions in risk of severe and nocturnal hypoglycemia were driven by the IAsp subgroup, since no significant differences were detected within the HI subgroup for either outcome. In terms of rate ratios, there was no significant difference in terms of severe hypoglycemia, while the rates of nocturnal and overall hypoglycemia were significantly reduced in favour of IDet. When analyzed by bolus insulin, both IAsp and HI subgroups demonstrated significant nocturnal hypoglycemia rate ratios in favour of IDet, while neither subgroup had significant rate ratios in terms of overall hypoglycemia. Most overall and subgroup analyses of hypoglycemia rate ratios demonstrated a large degree of heterogeneity that was not readily explained; although in nearly all cases, the direction of effect within individual studies was consistent with the pooled estimate. The rate ratio results for overall hypoglycemia, however, were an exception to this pattern. Within the IAsp subgroup, two studies demonstrated a significant reduction in rate with IDet,^{39,44} while one demonstrated a significant effect in favour of NPH.⁴² Similarly, in the HI subgroup, two studies demonstrated significant rate ratios in favour of IDet,^{43,46} while one did not.⁴⁵ Attempts to explore the reason for this heterogeneity did not reveal plausible explanatory factors. In general, individual rate ratio estimates were highly precise (i.e., confidence intervals were small) due to the large number of hypoglycemic events. This contributed to statistical heterogeneity.

Another finding of note was a small but statistically significant reduction in mean weight among subjects treated with IDet. No studies assessed HRQoL, satisfaction with treatment, long-term complications, or resource utilization.

Two additional studies provided data on insulin detemir for type 1 DM in adults.^{48,49} In a comparison of IDet with IAsp versus NPH with HI, a statistically significant difference of 0.23% in favour of detemir was observed in mean A1c.⁴⁹ RRs and rate ratios for nocturnal and overall hypoglycemia also demonstrated significant benefit for IDet, although there was no difference in terms of severe hypoglycemia.⁴⁹ The second trial compared IDet with IGlar, with IAsp used as bolus in both arms.⁴⁸ There was no significant difference between treatments according to most outcomes. However, there was a significantly lower risk of severe hypoglycemia with detemir as well as a lower rate ratio. The rate ratio, but not RR, for nocturnal hypoglycemia also favoured IDet.⁴⁸

Like the pediatric studies, the methodological quality of the available evidence in adults was generally poor; studies were not blinded, and allocation concealment was unclear in most reports. The lack of blinding is of special concern in terms of the assessment of subjective outcomes such as hypoglycemia, HRQoL, and treatment satisfaction. It is possible that any observed advantages in terms of these outcomes are at least partially due to ascertainment bias.

The results of a previous systematic review (without meta-analysis) on the effect of the long-acting insulin analogues reported similar results to those reported here.⁹⁸

To summarize, there is little evidence that shows IGIar is superior to NPH insulin in terms of hypoglycemia, although the results were somewhat heterogeneous with some studies showing marked benefit with IGIar. The observed benefit of 0.17% in A1c, although statistically significant, may be of limited clinical significance, since minimal clinically important A1c differences that have been identified in the literature range from 0.4 to 1.0%.^{99,100} In contrast, IDet appears to be associated with reduced risks for severe and nocturnal hypoglycemia, although there was no difference in A1c. Furthermore, in a head-to-head comparison with IGIar, IDet demonstrated a reduced risk for severe hypoglycemia as well as a reduced rate ratio for nocturnal hypoglycemia. Therefore, IDet may be useful in adult type 1 diabetics who experience frequent nocturnal hypoglycemia or are prone to severe hypoglycemic episodes. Further studies are required to better understand the impact of the long-acting insulin analogues on quality-of-life and patient satisfaction, as well as to assess the long-term safety and efficacy of these agents in adults with type 1 DM.

8.2 Type 2 DM

Most trials that compared IGIar with NPH insulin in adult type 2 diabetics also treated with one or more OADs. The combination of IGIar or NPH with a bolus insulin (i.e., without OAD co-therapy) was only compared in one study that used HI.⁷⁴ Glycemic control as measured by A1c was no better in glargine-treated subjects regardless of the type of co-therapy. Indeed, mean A1c at endpoint was significantly higher in the glargine arm as compared with NPH in the bolus insulin study, although the difference (0.28%) is likely not clinically significant. Data on FPG were only available for the OAD studies; no significant difference between treatments was observed for this outcome. There was also no significant difference in the risk or rate of severe hypoglycemia, although subgroup analysis by OAD type revealed a statistically significant RR of 0.4 in the sulfonylurea subgroup and a nonsignificant RR greater than 1 in the subgroup of studies in which various OADs were allowed. A similar pattern was observed for severe hypoglycemia rate ratios. In terms of nocturnal hypoglycemia, RR significantly favoured glargine for both bolus insulin and OAD-treated subjects. Similar results were observed for nocturnal hypoglycemia rate ratio in the latter group, while the data required to calculate this statistic for the bolus insulin study were unavailable. The pooled analysis of overall hypoglycemia risk in the OAD studies also demonstrated a slight but statistically significant reduction; however, this was not the case for the rate ratio. Although a large degree of heterogeneity was observed in the nocturnal and overall hypoglycemia rate ratios, the results of individual studies were all consistent with the pooled effect. The RR for overall hypoglycemia in the bolus insulin study was not significant.

Other findings from the IGIar versus NPH studies in type 2 DM included a non-significant effect on body weight and BMI and a significant benefit in favour of IGIar in terms of patient satisfaction with treatment. The latter outcome was reported in only one study,⁷⁷ in which patient satisfaction was measured using the Diabetes Treatment Satisfaction Questionnaire Change (DTSQc) scale. The clinical significance of the observed difference (0.60) is unclear. There were no studies on HRQoL, long-term diabetes-related complications, or mortality.

Three studies compared the introduction of IGIar versus TZDs in type 2 adult diabetics poorly controlled on non-TZD OADs. Glycemic control, as measured by A1c and FPG was significantly better in glargine-treated subjects. However, this was at the expense of a significantly higher risk of nocturnal hypoglycemia. Pooled relative risks for severe and overall hypoglycemia were not significantly different, although both point estimates were greater than 1 and one study reported a significant risk of overall hypoglycemia with IGIar.⁸⁶ Significant heterogeneity was observed in the

pooled relative risk estimates for severe and overall hypoglycemia; in each of these, the single study in which the TZD was pioglitazone reported higher estimates of risk than the two studies that used rosiglitazone. It is unclear whether this is due to differences between these two agents in the propensity to cause hypoglycemia, methodological differences across studies, or chance. Other findings from the IGIar versus TZD studies were a significant reduction in weight with IGIar and statistically significant improvements in certain measures of HRQoL, such as distress due to hypoglycemia and fatigue and total distress,⁸⁶ as well as general health perception and total symptom scores.^{9°} No studies assessed patient satisfaction with treatment or long-term outcomes. There were also no studies that compared IGIar with other OADs.

As compared to IGIar, there were few studies that compared IDet with NPH for the treatment of type 2 DM. Only three studies with OAD co-therapy 69,70,91 and one study with bolus insulin (IAsp) therapy 68 were identified. In the latter, there was no significant difference between treatments in terms of A1c, FPG, severe hypoglycemia, or overall hypoglycemia.⁶⁸ The risk of nocturnal hypoglycemia, however, was significantly reduced with IDet. In the OAD studies, glycemic control as measured by A1c significantly favoured NPH, although the observed difference was unlikely to be clinically significant. FPG did not differ significantly between groups. Heterogeneity was evident in that one of the three studies reported significantly higher mean A1c at endpoint in the IDet arm with no significant difference in FPG,⁶⁹ another reported no difference in A1c with a significant improvement in FPG,⁷⁰ and the third reported no significant difference between groups for either measure.⁹¹ These differences may have been due to the fact that two studies administered both IDet and NPH once daily^{70,91}, while the third study administered them twice daily.⁶⁹ The overall relative risks for severe and overall hypoglycemia were not statistically significant, while the rate ratios for each outcome significantly favoured IDet. Of note is the high degree of imprecision caused by the low number of severe hypoglycemia events. As well, each of the two studies that comprised the overall RR estimate reported statistically significant reductions in favour of IDet; the lack of statistical significance of the pooled estimate resulted from heterogeneity in the two individual estimates. Both the RR and rate ratio for nocturnal hypoglycemia significantly favoured IDet. Mean body weight was also significantly lower in detemir-treated subjects as compared with NPH. No studies assessed HRQoL, patient satisfaction, or long-term complications.

One additional study compared detemir with NPH, with IAsp used as bolus insulin with IDet, and HI with NPH.⁷¹ No significant differences were reported for A1c or severe hypoglycemia, although the relative risk and rate ratio for nocturnal hypoglycemia significantly favoured IDet. As well, change in body weight from baseline significantly favoured the analogue arm.

Two studies compared IDet with IGlar in adults with type 2 DM, one in combination with IAsp⁷² and the other in combination with various OADs.⁷³ Both studies were reported in abstract form. In the former study, the IGlar arm was found to have a small but statistically significant advantage over IDet in terms of A1c, although there was no difference in terms of FPG. This study did not report data on hypoglycemia, although the authors noted that there was no significant differences in the risk of hypoglycemia.⁷² The OAD study did not demonstrate significant differences in terms of A1c, FPG, nocturnal hypoglycemia, or overall hypoglycemia.⁷³ Severe hypoglycemia was not reported in this study. Both studies reported statistically significant differences in body weight in favour of IDet.

Our results are similar to those reported in recent systematic reviews and meta-analysis of the long-acting insulin analogues in adult type 2 diabetics.^{98,100} Horvath *et al.* also found minimal or no significant differences for both IGlar and IDet in terms of A1c as compared with NPH and no

significant difference in the odds ratio for severe hypoglycemia. The risks of symptomatic hypoglycemia and symptomatic nocturnal hypoglycemia were significantly reduced for both IGIar and IDet in this study.¹⁰⁰ In terms of nocturnal hypoglycemia, Brunton also reported similar results to those reported here.⁹⁸

The quality of the available studies in type 2 DM was generally poor. No studies were blinded, and it was not clear in most reports whether allocation was adequately concealed. The lack of blinding is most problematic in terms of the assessment of hypoglycemia, since this outcome was usually self-assessed by subjects based on symptoms. The measurement of HRQoL may also be affected by the lack of blinding. The possibility of spurious results in favour of the long-acting analogues due to ascertainment bias cannot, therefore, be entirely discounted.

In summary, neither IGIar nor IDet offer advantages over NPH insulin in terms of glycemic control in adults with type 2 DM, although both agents appear to reduce the risk of nocturnal hypoglycemia. In general, risks and rates of severe hypoglycemia were not significantly reduced for either agent. The only exception was the severe hypoglycemia rate ratio for the comparison of IDet versus NPH with OAD co-therapy. In contrast to IGIar, IDet demonstrated small but statisitically significant benefits in terms of body weight comparison to NPH insulin. In head-to-head studies, there was no evidence that one long-acting analogue is superior to the other, although IDet produced significantly lower increases in body weight as compared to IGIar. IGIar and IDet may be most beneficial in insulin-treated type 2 patients who experience frequent nocturnal hypoglycemia on NPH insulin. Further research is needed to determine other potential benefits of the long-acting analogues in terms of quality-of-life and patient satisfaction with treatment and HRQoL. Comparative studies with NPH designed to assess long-term safety and prevention of diabetesrelated complications are also needed. Improvements in methodological quality are also necessary to produce valid assessments of these agents.

8.3 Hypoglycemia Benefits of the Long-Acting Analogues

Although results were variable, the main benefit of the long-acting insulin analogues appears to be reduction in the risk and rate of hypoglycemia, especially nocturnal hypoglycemia. As compared with hypoglycemia that occurs during the day, nocturnal hypoglycemia is less likely to receive prompt treatment due to lack of awareness during sleep. As a result, the development of severe hypoglycemia is more likely, with its attendant complications of serious injury, seizures, coma, or even death.⁹⁸ Nocturnal hypoglycemia may also impair cognitive function, especially in children, and reduce quality-of-life due to sleep disturbance.⁹⁸ Frequent episodes may result in progressive hypoglycemic unawareness, thereby further increasing the risk of severe hypoglycemic events.⁹⁸ Furthermore, some, but not all, of the literature on the impact of hypoglycemia on glycemic control has demonstrated that a history of hypoglycemia is associated with development of fear of hypoglycemia, which in turn can cause deterioration in metabolic control as patients engage in "over-compensatory behaviours" to prevent future hypoglycemic episodes.¹⁰¹ However, the lack of clinically significant benefit in terms of A1c indicates that a reduction in hypoglycemia risk with the long-acting analogues did not result in improved glycemic control. There was also little evidence to indicate that reduced hypoglycemia risk translated into a higher quality-of-life or better patient satisfaction, since these outcomes were seldom reported in studies.

8.4 Limitations

Use of the Jadad scale, a quality assessment instrument that places a large weight on doubleblinding (2 of 5 points are for this characteristic), may be considered suboptimal given the practical difficulties associated with blinding trials comparing long-acting analogues (which are clear solutions) with NPH insulin (which is cloudy). Since none of the RCTs included in this meta-analysis was double-blined, the maximum score achievable was 3/5, and nearly all studies were considered to have significant methodological limitations. Despite the practical difficulties involved, however, the lack of blinding does introduce a potential source of ascertainment bias, especially for subjective outcomes such as patient-reported hypoglycemia and quality-of-life. Use of the Jadad scale was therefore considered appropriate to evaluate methodological quality, especially in light of the additional items considered. These included allocation concealment, blinding of assessors, intention-to-treat analysis, and loss to follow-up. Given that the Jadad scale and additional items together measure all aspects of trial quality that are currently considered relevant to internal validity, it is unlikely that use of a different scale would have significantly affected the results. In fact, the finding that most trials of the long-acting analogues have significant methodological limitations was also reported in a recent systematic review.¹⁰⁰

Not all studies identified for a particular comparison reported all outcomes of interest. While A1c was reported in nearly all studies, other outcomes such as the various forms of hypoglycemia, fasting plasma glucose, weight, and quality-of-life were not. The latter three endpoints in particular were usually reported in only a small proportion of the available studies. These results are therefore most likely to be affected by reporting bias.

Another possible limitation lies in the methodological decision to use mean values at endpoint for continuous outcomes rather than mean change from baseline, except where such data were not reported or there was a statistically significant difference in mean baseline values. Such an approach is valid because randomization should, on average, result in groups that are evenly matched. However, chance differences at baseline, even if not statistically significant, may either reduce or amplify treatment differences, especially in analyses consisting of one or a small number of RCTs. FPG and body weight are most likely to be affected due to the small number of studies available for these outcomes.

It has been suggested that separate analysis of glycemic control and hypoglycemia is inappropriate due to the correlation between the two endpoints; that is, as A1c decreases, the risk of hypoglycemia increases. Furthermore, many of the trials of the long-acting analogues were of a non-inferiority design and were conducted by investigators who were not yet fully experienced in their optimal use. As such, many trials were unable to detect a benefit of the LAIs in terms of A1c, although hypoglycemia risk was reduced, while others were able to achieve better glycemic control with the LAIs but with little or no difference in hypoglycemia. Pooling of results from both types of studies to calculate estimates of A1c and hypoglycemia, without accounting for the correlation between the two endpoints, may therefore underestimate the beneficial effects of the long-acting analoguess on hypoglycemia. A recent study has addressed this concern by conducting a meta-regression analysis of hypoglycemia and A1c using patient-level data from RCTs of IGlar.¹⁰² Although differences between IGlar and NPH in unadjusted hypoglycemia rates were somewhat lower as compared with adjusted rates, the absolute differences between the two were small. For example, the unadjusted percentage reduction in the event rate of severe hypoglycemia in type 1 DM was 16.8%, and 21.5% after adjustment for endpoint A1c (neither value was statistically significant).¹⁰²

Adjustment for A1c, therefore, does not appear to have a major effect on estimates of treatment differences in hypoglycemia.

9 CONCLUSION

The bulk of the available evidence on long-acting analogues for both type 1 and type 2 diabetics consists of short- to medium-term comparisons with NPH in terms of A1c and hypoglycemia. Most studies were of poor methodological quality. Based on the available evidence, the benefits of the long-acting insulin analogues over NPH insulin appear to be marginal at best, although these agents may be useful in patients with a history of frequent or severe hypoglycemia. Further research of higher methodological quality is required to measure the impact of these agents on quality-of-life, health care resource utilization, and long-term outcomes, especially with respect to the development of diabetes complications. As well, since a number of strategies exist to reduce the risk of hypoglycemia (e.g., the use of continuous subcutaneous insulin infusion, bedtime snacks),⁹⁸ comparative studies of the long-acting analogues with these approaches are required to determine which is most effective.

10 **REFERENCES**

- 1. *Diabetes: facts & figures*. Ottawa: Public Health Agency of Canada; 2003. Available: <u>http://www.phac-aspc.gc.ca/ccdpc-cpcmc/diabetes-diabete/english/facts/index.html</u> (accessed 2007 Aug 1).
- Canadian Diabetes Association 2003 clinical practice guidelines for the prevention and management of diabetes in Canada. *Can J Diabetes* 2003;27(Suppl 2):i-S140. Available: <u>http://www.diabetes.ca/cpg2003/downloads/cpgcomplete.pdf</u> (accessed 2007 Aug 1).
- 3. Diabetes Control and Complications Trial Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. *JAMA* 2002;287(19):2563-9.
- 4. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. *N Engl J Med* 1993;329(14):977-86 (accessed 2006 Sep 19).
- Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. *Ann Intern Med* 2004;141(6):421-31. Available: <u>http://www.annals.org/cgi/reprint/141/6/421.pdf</u>.
- Khaw KT, Wareham N, Bingham S, Luben R, Welch A, Day N. Association of hemoglobin A_{1c} with cardiovascular disease and mortality in adults: the European prospective investigation into cancer in Norfolk. *Ann Intern Med* 2004;141(6):413-20. Available: <u>http://www.annals.org/cgi/reprint/141/6/413.pdf</u> (accessed 2007 Sep 7).
- 7. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. *N Engl J Med* 2005;353(25):2643-53.
- 8. Nathan DM, Lachin J, Cleary P, Orchard T, Brillon DJ, Backlund JY, et al. Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. *N Engl J Med* 2003;348(23):2294-303.
- The prevalence and costs of diabetes. Toronto: Canadian Diabetes Association; 2007. Pub no. 114007 06-295 06/06 Q-50M. Available: <u>http://www.diabetes.ca/Files/prevalence-and-costs.pdf</u> (accessed 2007 Aug 16).
- 10. Health Canada. *Diabetes in Canada*. 2nd edition. Ottawa: Health Canada; 2002. Available: <u>http://www.phac-aspc.gc.ca/publicat/dic-dac2/pdf/dic-dac2_en.pdf</u> (accessed 2007 Aug 1).
- Dawson KG, Gomes D, Gerstein H, Blanchard JF, Kahler KH. The economic cost of diabetes in Canada, 1998. *Diabetes Care* 2002;25(8):1303-7. Available: <u>http://care.diabetesjournals.org/cgi/reprint/25/8/1303.pdf</u> (accessed 2007 Aug 1).
- Hemmelgarn BR, Toth EL, King M, Crowshoe L, Ralph-Campbell K. Diabetes and First Nations people in Alberta. In: *Alberta Diabetes Atlas 2007*. Edmonton: Institute of Health Economics; 2007. Ch.9. p.127-40. Available: <u>http://www.achord.ca/projects/documents/AlbertaDiabetesAtlas2007.pdf</u> (accessed 2007 Jul 24).
- 13. Balducci S, Iacobellis G, Parisi L, Di BN, Calandriello E, Leonetti F, et al. Exercise training can modify the natural history of diabetic peripheral neuropathy. *J Diabetes Complications* 2006;20(4):216-23.
- 14. Lindström J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, et al. The Finnish Diabetes Prevention Study (DPS): lifestyle intervention and 3-year results on diet and physical activity. *Diabetes Care* 2003;26(12):3230-6 (accessed 2007 Mar 12).

- 15. Shah BR, Mamdani M, Kopp A. Drug use in older people with diabetes. In: *Diabetes in Ontario: an ICES practice atlas*. Toronto: Canadian Diabetes Association; 2003. p.51-76. Available: http://www.ices.on.ca/file/DM_Chapter3.pdf (accessed 2007 Aug 6).
- 16. Hirsch IB. Insulin analogues. N Engl J Med 2005;352(2):174-83.
- 17. *Compendium of pharmaceuticals and specialties, online version (e-CPS).* [CPS] Canadian Pharmacists Association; 2006.
- Porcellati F, Rossetti P, Busciantella NR, Marzotti S, Lucidi P, Luzio S, et al. Comparison of pharmacokinetics and dynamics of the long-acting insulin analogs glargine and detemir at steady state in type 1 diabetes: a double-blind, randomized, crossover study. *Diabetes Care* 2007;30(10):2447-52 (accessed 2007 Nov 7).
- 19. Disorders of carbohydrate metabolism. In: Beers MH, Berklow R, editors. *Merck manual of diagnosis and therapy*. 17th ed. Whitehouse Station (NJ): Merck Research Laboratories; 1999. p.165-85.
- Tran K, Banerjee S, Li H, Cimon K, Daneman D, Simpson S, et al. Long-acting insulin analogues for diabetes mellitus: meta-analysis of clinical outcomes and assessment of cost-effectiveness [Technology Report no 92]. Ottawa: Canadian Agency for Drugs and Technologies in Health; 2007. Available: http://www.cadth.ca/media/pdf/341b_Long-acting-insulin_tr_e.pdf (accessed 2007 Dec 14).
- Banerjee S, Tran K, Li H, Cimon K, Daneman D, Simpson S, et al. *Short-acting insulin analogues for diabetes mellitus: meta-analysis of clinical outcomes and assessment of cost-effectiveness* [Technology Report no 87]. Ottawa: Canadian Agency for Drugs and Technologies in Health; 2007. Available: http://www.cadth.ca/media/pdf/341A Insulin_tr_e.pdf (accessed 2007 Dec 14).
- 22. Wiebe N, Vandermeer B, Platt RW, Klassen TP, Moher D, Barrowman NJ. A systematic review identifies a lack of standardization in methods for handling missing variance data. *J Clin Epidemiol* 2006;59(4):342-53.
- Cochrane handbook for systematic reviews of interventions 4.2.6 [updated Sep 2006]. Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions 4.2.6 [updated Sep 2006]. Chichester (UK): John Wiley & Sons, Ltd.; 2006. Available: http://www.cochrane.org/resources/handbook/Handbook4.2.6Sep2006.pdf (accessed 2007 Aug 16).
- 24. Elbourne DR, Altman DG, Higgins JP, Curtin F, Worthington HV, Vail A. Meta-analyses involving crossover trials: methodological issues. *Int J Epidemiol* 2002;31(1):140-9.
- Goldstein DE, Little RR, Lorenz RA, Malone JI, Nathan DM, Peterson CM. Tests of glycemia in diabetes. *Diabetes Care* 2004;27(7):1761-73. Available: <u>http://care.diabetesjournals.org/cgi/content/full/27/7/1761</u> (accessed 2006 Sep 7).
- 26. Moher D, Pham B, Jones A, Cook DJ, Jadad AR, Moher M, et al. Does quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analyses? *Lancet* 1998;352(9128):609-13.
- 27. Schulz KF, Chalmers I, Hayes RJ, Altman DG. Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. *JAMA* 1995;273(5):408-12.
- 28. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? *Control Clin Trials* 1996;17(1):1-12.
- 29. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ* 2003;327(7414):557-60.

- 30. Robertson KJ, Schoenle E, Gucev Z, Mordhorst L, Gall MA, Ludvigsson J. Insulin detemir compared with NPH insulin in children and adolescents with Type 1 diabetes. *Diabet Med* 2007;24(1):27-34.
- 31. Kawamura T, Higashide T, Hirose M, Kimura K, Inada H, Niihira S, et al. Prospective, randomized, crossover study using insulin glargine and aspart compared with basal-bolus using NPH in Japanese children and adolescents with type 1 diabetes [poster]. 65th Annual Scientific Sessions; 2005 Jun 10; San Diego. Poster no 1890-P. Available: http://scientificsessions.diabetes.org/Abstracts/index.cfm?fuseaction=Locator.PreviewAbstract&popup=yes&NoLayout=Yes&AbstractID=8354 (accessed 2005 Aug 12).
- 32. Schober E, Schoenle E, Van Dyk J, Wernicke-Panten K, the Pediatric Study Group on Insulin Glargine. Comparative trial between insulin glargine and NPH insulin in children and adolescents with type 1 diabetes mellitus. *J Pediatr Endocrinol Metab* 2002;15(4):369-76.
- 33. Chase HP, Arslanian S, White N, Usiskin K, Tamborlane W. Insulin glargine (GLAR) vs intermediateacting insulin in adolescents with type 1 diabetes (T1DM) using multiple daily injection (MDI) therapy [abstract]. *Diabetologia* 2006;49(Suppl 1):559-60, SEP. Available: <u>http://scientificsessions.diabetes.org/Abstracts/index.cfm?fuseaction=Locator.PreviewAbstract&popup=yes</u> <u>&NoLayout=Yes&AbstractID=15037</u>.
- 34. White NH, Tamborlane W, Usiskin K. Less variability in blood glucose (BG) values with insulin glargine (GLAR) vs intermediate-acting insulin (NPH or Lente) in adolescents with type 1 diabetes (T1DM) [abstract]. American Diabetes Association 66th Scientific Sessions; 2006 Jun 9; Washington. Abstract no 578-P. Available: <u>http://scientificsessions.diabetes.org/Abstracts/index.cfm?fuseaction=Locator.PreviewAbstract&popup=yes &NoLayout=Yes&AbstractID=13574</u>.
- 35. Mianowska B, Szadkowska A, Czerniawska E, Pietrzak I, Bodalski J. A randomized cross-over trial comparing glargine and NPH insulin in preadolescent type 1 diabetic children [abstract]. *Diabetologia* 2006;49 Suppl 1:559.
- 36. Murphy NP, Keane SM, Ong KK, Ford-Adams M, Edge JA, Acerini CL, et al. Randomized cross-over trial of insulin glargine plus lispro or NPH insulin plus regular human insulin in adolescents with type 1 diabetes on intensive insulin regimens. *Diabetes Care* 2003;26(3):799-804. Available: http://care.diabetesjournals.org/cgi/reprint/26/3/799 (accessed 2007 Jan 9).
- 37. Del Sindaco P, Ciofetta M, Lalli C, Perriello G, Pampanelli S, Torlone E, et al. Use of the short-acting insulin analogue lispro in intensive treatment of type 1 diabetes mellitus: importance of appropriate replacement of basal insulin and time-interval injection-meal. *Diabet Med* 1998;15(7):592-600.
- Deeb LC, Holcombe JH, Brunelle R, Zalani S, Brink S, Jenner M, et al. Insulin lispro lowers postprandial glucose in prepubertal children with diabetes. *Pediatrics* 2001;108(5):1175-9. Available: <u>http://pediatrics.aappublications.org/cgi/reprint/108/5/1175</u> (accessed 2006 Dec 18).
- 39. Kolendorf K, Ross GP, Pavlic-Renar I, Perriello G, Philotheou A, Jendle J, et al. Insulin detemir lowers the risk of hypoglycaemia and provides more consistent plasma glucose levels compared with NPH insulin in Type 1 diabetes. *Diabet Med* 2006;23(7):729-35.
- 40. De Leeuw I, Vague P, Selam JL, Skeie S, Lang H, Draeger E, et al. Insulin detemir used in basal-bolus therapy in people with type 1 diabetes is associated with a lower risk of nocturnal hypoglycaemia and less weight gain over 12 months in comparison to NPH insulin. *Diabetes Obes Metab* 2005;7(1):73-82.
- 41. Home P, Bartley P, Russell-Jones D, Hanaire-Broutin H, Heeg JE, Abrams P, et al. Insulin detemir offers improved glycemic control compared with NPH insulin in people with type 1 diabetes: a randomized clinical trial. *Diabetes Care* 2004;27(5):1081-7. Available:

http://care.diabetesjournals.org/cgi/reprint/27/5/1081?maxtoshow=&HITS=10&hits=10&RESULTFORM AT=&author1=home&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&volu me=27&resourcetype=HWCIT.

- 42. Pieber TR, Draeger E, Kristensen A, Grill V. Comparison of three multiple injection regimens for Type 1 diabetes: morning plus dinner or bedtime administration of insulin detemir vs. morning plus bedtime NPH insulin. *Diabet Med* 2005;22(7):850-7.
- 43. Hermansen K, Madsbad S, Perrild H, Kristensen A, Axelsen M. Comparison of the soluble basal insulin analog insulin detemir with NPH insulin: a randomized open crossover trial in type 1 diabetic subjects on basal-bolus therapy. *Diabetes Care* 2001;24(2):296-301. Available: <u>http://care.diabetesjournals.org/cgi/reprint/24/2/296.pdf</u> (accessed 2004 Mar 26).
- 44. Vague P, Selam JL, Skeie S, De Leeuw I, Elte JW, Haahr H, et al. Insulin detemir is associated with more predictable glycemic control and reduced risk of hypoglycemia than NPH insulin in patients with type 1 diabetes on a basal-bolus regimen with premeal insulin aspart. *Diabetes Care* 2003;26(3):590-6. Available: http://care.diabetesjournals.org/cgi/reprint/26/3/590.pdf (accessed 2004 Mar 26).
- 45. Russell-Jones D, Simpson R, Hylleberg B, Draeger E, Bolinder J. Effects of QD insulin detemir or neutral protamine Hagedorn on blood glucose control in patients with type I diabetes mellitus using a basal-bolus regimen. *Clin Ther* 2004;26(5):724-36.
- 46. Standl E, Lang H, Roberts A. The 12-month efficacy and safety of insulin detemir and NPH insulin in basal-bolus therapy for the treatment of type 1 diabetes. *Diabetes Technol Ther* 2004;6(5):579-88.
- 47. Jones DR, Clauson P, Ong S, Mathieu C. Less glucose variability with insulin detemir compared to NPH insulin in subjects with type 1 diabetes undergoing continuous glucose monitoring [abstract]. American Diabetes Association 66th Scientific Sessions; 2006 Jun 9; Washington. Abstract no 494-P. Available: http://scientificsessions.diabetes.org/Abstracts/index.cfm?fuseaction=Locator.PreviewAbstract&popup=yes&NoLayout=Yes&AbstractID=13490 (accessed 2007 Jan 30).
- 48. Pieber TR, Treichel HC, Hompesch B, Philotheou A, Mordhorst L, Gall MA, et al. Comparison of insulin detemir and insulin glargine in subjects with Type 1 diabetes using intensive insulin therapy. *Diabet Med* 2007;24(6):635-42.
- 49. Hermansen K, Fontaine P, Kukolja KK, Peterkova V, Leth G, Gall MA. Insulin analogues (insulin detemir and insulin aspart) versus traditional human insulins (NPH insulin and regular human insulin) in basalbolus therapy for patients with type 1 diabetes. *Diabetologia* 2004;47(4):622-9.
- 50. Davies MJ, Chatterjee S, Rengarajan T, Lawrence IG, McNally PG. Glargine vs insulatard: efficacy in comparison with insulin aspart in a basal bolus regimen in type 1 diabetes the Glargine and Aspart Study (GLASS) [abstract]. *Diabetologia* 2005;48(Suppl 1):A329, 2005.
- Pesic M, Radenkovic S, Zivic S, Velojic M, Dimic D, Mikic D. Comparison between NPH insulin and insulin glargine in intensive insulin therapy in type 1 diabetes mellitus [abstract]. *Endocrine Abstracts [8th European Congress of Endocrinology]* 2006;11(P328). Available: <u>http://www.endocrine-abstracts.org/ea/0011/ea0011p328.htm</u>.
- 52. Pieber TR, Eugene-Jolchine I, Derobert E, The European Study Group of HOE 901 in type 1 diabetes. Efficacy and safety of HOE 901 versus NPH insulin in patients with type 1 diabetes. *Diabetes Care* 2000;23(2):157-62. Available: <u>http://care.diabetesjournals.org/cgi/reprint/23/11/1666?maxtoshow=&HITS=10&hits=10&RESULTFORM</u> <u>AT=&author1=raskin&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&volu</u> <u>me=23&resourcetype=HWCIT</u> (accessed 2006 Dec 7).

- 53. Garg S, Gerard L, Pennington M, Mecca T, Taylor L, Chase P, et al. Efficacy of the new long acting insulin analog (HOE901) on fasting glucose values in IDDM [abstract]. *Diabetes* 1998;47 Suppl 1:A359.
- 54. Hershon KS, Blevins TC, Mayo CA, Rosskamp R. Once-daily insulin glargine compared with twice-daily NPH insulin in patients with type 1 diabetes. *Endocr Pract* 2004;10(1):10-7.
- 55. Home PD, Rosskamp R, Forjanic-Klapproth J, Dressler A, Bartusch-Marrain P, Egger T, et al. A randomized multicentre trial of insulin glargine compared with NPH insulin in people with type 1 diabetes. *Diabetes Metab Res Rev* 2005;21(6):545-53.
- 56. Ratner RE, Hirsch IB, Neifing JL, Garg SK, Mecca TE, Wilson CA, et al. Less hypoglycemia with insulin glargine in intensive insulin therapy for type 1 diabetes. *Diabetes Care* 2000;23(5):639-43. Available: http://care.diabetesjournals.org/cgi/reprint/23/5/639.pdf (accessed 2003 Apr 30).
- 57. Rosenstock J, Park G, Zimmerman J, U.S. Insulin Glargine (HOE 901) Type 1 Diabetes Investigator Group. Basal insulin glargine (HOE 901) versus NPH insulin in patients with type 1 diabetes on multiple daily insulin regimens. *Diabetes Care* 2000;23(8):1137-42. Available: <u>http://care.diabetesjournals.org/cgi/reprint/23/8/1137.pdf</u> (accessed 2003 Apr 30).
- 58. Witthaus E, Stewart J, Bradley C. Treatment satisfaction and psychological well-being with insulin glargine compared with NPH in patients with type 1 diabetes. *Diabet Med* 2001;18(8):619-25.
- 59. Raskin P, Klaff L, Bergenstal R, Halle JP, Donley D, Mecca T. A 16-week comparison of the novel insulin analog insulin glargine (HOE 901) and NPH human insulin used with insulin lispro in patients with type 1 diabetes. *Diabetes Care* 2000;23(11):1666-71 (accessed 2006 Dec 7).
- 60. Fulcher GR, Gilbert RE, Yue DK. Glargine is superior to neutral protamine Hagedorn for improving glycated haemoglobin and fasting blood glucose levels during intensive insulin therapy. *Intern Med J* 2005;35(9):536-42.
- 61. Porcellati F, Rossetti P, Pampanelli S, Fanelli CG, Torlone E, Scionti L, et al. Better long-term glycaemic control with the basal insulin glargine as compared with NPH in patients with Type 1 diabetes mellitus given meal-time lispro insulin. *Diabet Med* 2004;21(11):1213-20.
- 62. Rossetti P, Pampanelli S, Fanelli C, Porcellati F, Costa E, Torlone E, et al. Intensive replacement of basal insulin in patients with type 1 diabetes given rapid-acting insulin analog at mealtime: a 3-month comparison between administration of NPH insulin four times daily and glargine insulin at dinner or bedtime. *Diabetes Care* 2003;26(5):1490-6. Available: http://care.diabetesjournals.org/cgi/reprint/26/5/1490.
- 63. Bolli G, Songini M, Trovati M, Del Prato S, Ghirlanda G, Cordera R, et al. Transfer of patients with type 1 diabetes from NPH insulin to insulin glargine as basal insulin: a multicentre, randomised, parallel-group, open-label study [abstract]. *Diabetologia* 2006;49 Suppl 1:607. Available: <u>http://scientificsessions.diabetes.org/Abstracts/index.cfm?fuseaction=Locator.PreviewAbstract&popup=yes</u> &<u>NoLayout=Yes&AbstractID=15047</u>.
- 64. Ashwell SG, Amiel SA, Bilous RW, Dashora U, Heller SR, Hepburn DA, et al. Improved glycaemic control with insulin glargine plus insulin lispro: a multicentre, randomized, cross-over trial in people with Type 1 diabetes. *Diabet Med* 2006;23(3):285-92.
- 65. Kudva YC, Basu A, Jenkins GD, Pons GM, Quandt LL, Gebel JA, et al. Randomized controlled clinical trial of glargine versus ultralente insulin in the treatment of type 1 diabetes. *Diabetes Care* 2005;28(1):10-4. Available: <u>http://care.diabetesjournals.org/cgi/reprint/28/1/10</u>.

- 66. Radermecker RP, Scheen AJ. Insulin Lispro versus human regular insulin in continuous subcutaneous insulin infusion: A systematic review of comparative efficacy and safety. *Diabetes Metab* 2003;29(Hors serie 2):4S233, August.
- 67. Zhou Gui-lan [Author RA, E-mail:, Li J, Bi H, Wang F. Comparation of insulin glargine and isophane protamine biosynthetic human insulin in treatment of type 2 diabetes. *Zhongguo Xinyao yu Linchuang Zazhi* 2006;25(5):366-8.
- 68. Haak T, Tiengo A, Draeger E, Suntum M, Waldhäusl W. Lower within-subject variability of fasting blood glucose and reduced weight gain with insulin detemir compared to NPH insulin in patients with type 2 diabetes. *Diabetes Obes Metab* 2005;7(1):56-64.
- 69. Hermansen K, Davies M, Derezinski T, Martinez RG, Clauson P, Home P. A 26-Week, Randomized, Parallel, Treat-to-Target Trial Comparing Insulin Detemir With NPH Insulin as Add-On Therapy to Oral Glucose-Lowering Drugs in Insulin-Naive People With Type 2 Diabetes. *Diabetes Care* 2006;29(6):1269-74. Available: <u>http://care.diabetesjournals.org/cgi/reprint/29/6/1269</u> (accessed 2007 Jan 9).
- Philis-Tsimikas A, Charpentier G, Clauson P, Ravn GM, Roberts VL, Thorsteinsson B. Comparison of once-daily insulin detemir with NPH insulin added to a regimen of oral antidiabetic drugs in poorly controlled type 2 diabetes. *Clin Ther* 2006;28(10):1569-81.
- 71. Rašlová K, Bogoev M, Raz I, Leth G, Gall MA, Hancu N. Insulin detemir and insulin aspart: a promising basal-bolus regimen for type 2 diabetes. *Diabetes Res Clin Pract* 2004;66(2):193-201.
- 72. Raskin P, Chaykin L, Mak C, Koenen C. Comparison of insulin detemir and insulin glargine using a basalbolus regimen in a treat-to-target study in people with type 2 diabetes. 19th World Diabetes Congress; 2006 Dec 3; Cape Town. Abstract no P947.
- 73. Rosenstock J, Davies M, Home PD, Larsen J, Tamer SC, Schernthaner G. Insulin detemir added to oral anti-diabetic drugs in type 2 diabetes provides glycemic control comparable to insulin glargine with less weight gain [abstract]. American Diabetes Association 66th Scientific Sessions; 2006 Jun 9; Washington. Abstract no 555-P. Available: http://scientificsessions.diabetes.org/Abstracts/index.cfm?fuseaction=Locator.PreviewAbstract&popup=yes&NoLayout=Yes&AbstractID=13551.
- 74. Rosenstock J, Schwartz SL, Clark CM, Jr., Park GD, Donley DW, Edwards MB. Basal insulin therapy in type 2 diabetes: 28-week comparison of insulin glargine (HOE 901) and NPH insulin. *Diabetes Care* 2001;24(4):631-6. Available: http://care.diabetesjournals.org/cgi/reprint/24/4/631?maxtoshow=&HITS=10&hits=10&RESULTFORMA T=&andorexactfulltext=and&searchid=1&FIRSTINDEX=0&sortspec=relevance&volume=24&firstpage= 631&resourcetype=HWCIT (accessed 2006 Dec 7).
- 75. Fonseca V, Bell DS, Berger S, Thomson S, Mecca TE. A comparison of bedtime insulin glargine with bedtime neutral protamine Hagedorn insulin in patients with type 2 diabetes: subgroup analysis of patients taking once-daily insulin in a multicenter, randomized, parallel group study. *Am J Med Sci* 2004;328(5):274-80.
- 76. Pan CY, Sinnassamy P, Chung KD, Kim KW, on behalf of the LEAD Study Investigators Group. Insulin glargine versus NPH insulin therapy in Asian Type 2 diabetes patients. *Diabetes Res Clin Pract* 2007;76(1):111-8.
- 77. Eliaschewitz FG, Calvo C, Valbuena H, Ruiz M, Aschner P, Villena J, et al. Therapy in type 2 diabetes: insulin glargine vs. NPH insulin both in combination with glimepiride. *Arch Med Res* 2006;37(4):495-501.

- 78. Fritsche A, Schweitzer MA, H,,ring HU, 4001 Study Group. Glimepiride combined with morning insulin glargine, bedtime neutral protamine hagedorn insulin, or bedtime insulin glargine in patients with type 2 diabetes. A randomized, controlled trial. *Ann Intern Med* 2003;138(12):952-9.
- 79. Wang XL, Lu JM, Pan CY, Mu YM, Dou JT, Ba JM, et al. Evaluation of the superiority of insulin glargine as basal insulin replacement by continuous glucose monitoring system. *Diabetes Res Clin Pract* 2007;76(1):30-6.
- 80. Yki-Järvinen H, Kauppinen-Mäkelin R, Tiikkainen M, Vähätalo M, Virtamo H, Nikkilä K, et al. Insulin glargine or NPH combined with metformin in type 2 diabetes: the LANMET study. *Diabetologia* 2006;49(3):442-51.
- 81. Massi Benedetti M, Humburg E, Dressler A, Ziemen M, 3002 Study Group. A one-year, randomised, multicentre trial comparing insulin glargine with NPH insulin in combination with oral agents in patients with type 2 diabetes. *Horm Metab Res* 2003;35(3):189-96.
- Riddle MC, Rosenstock J, Gerich J, on behalf of the Insulin Glargine 4002 Study Investigators. The treatto-target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. *Diabetes Care* 2003;26(11):3080-6. Available: <u>http://care.diabetesjournals.org/cgi/reprint/26/11/3080</u>.
- 83. HOE 901/2004 Study Investigators Group. Safety and efficacy of insulin glargine (HOE 901) versus NPH insulin in combination with oral treatment in Type 2 diabetic patients. *Diabet Med* 2003;20(7):545-51.
- 84. Yki-Järvinen H, Dressler A, Ziemen M, HOE 901/3002 Study Group. Less nocturnal hypoglycemia and better post-dinner glucose control with bedtime insulin glargine compared with bedtime NPH insulin during insulin combination therapy in type 2 diabetes. *Diabetes Care* 2000;23(8):1130-6. Available: http://care.diabetesjournals.org/cgi/reprint/23/8/1130.pdf (accessed 2004 Apr 27).
- 85. Meneghini LF, Schwartz S, Rak ES, Harris A, Strange P. Improved glycemic control with insulin glargine (GLAR) vs pioglitazone (PIO) as add-on therapy in patients with type 2 diabetes (T2D) uncontrolled on sulfonylurea (SU) or metformin (MET) monotherapy [poster]. 65th Annual Scientific Sessions; 2005 Jun 10; San Diego. Poster no 10-LB. Available: <u>http://scientificsessions.diabetes.org/Abstracts/index.cfm?fuseaction=Locator.PreviewAbstract&popup=yes</u> <u>&NoLayout=Yes&AbstractID=12114</u> (accessed 2005 Aug 12).
- 86. Oster G, Meneghini LF, Schwartz S, Zhang Q. Health-related quality of life (HRQL) in patients with type 2 diabetes (T2DM) receiving add-on therapy with insulin glargine (GLAR) or pioglitazone (PIO) [abstract]. American Diabetes Association 66th Scientific Sessions; 2006 Jun 9; Washington. Abstract no. 2061-PO. Available: http://scientificsessions.diabetes.org/Abstracts/index.cfm?fuseaction=Locator.PreviewAbstract&popup=yes &NoLayout=Yes&AbstractID=15039 (accessed 2007 Mar 28).
- 87. Meneghini L, Schwartz S, Strange P, Oster G. Health-related quality of life and costs of receiving add-on therapy with insulin glargine or pioglitazone in patients with type 2 diabetes [abstract]. *Diabetologia* 2006;49(Suppl 1):543.
- Rosenstock J, Sugimoto D, Strange P, Stewart JA, Soltes-Rak E, Dailey G, et al. Triple therapy in type 2 diabetes: insulin glargine or rosiglitazone added to combination therapy of sulfonylurea plus metformin in insulin-naive patients. *Diabetes Care* 2006;29(3):554-9. Available: http://care.diabetesjournals.org/cgi/reprint/29/3/554.
- 89. Triplitt C, Glass L, Miyazaki Y, Wajcberg E, Gastaldelli A, De FE, et al. Comparison of glargine insulin versus rosiglitazone addition in poorly controlled type 2 diabetic patients on metformin plus sulfonylurea. *Diabetes Care* 2006;29(11):2371-7.

- 90. Vinik AI, Zhang Q. Adding insulin glargine versus rosiglitazone: health-related quality-of-life impact in type 2 diabetes. *Diabetes Care* 2007;30(4):795-800.
- 91. Tajima N, Iwamoto Y, Kaku K, Kawamori R, Nishida T, Kobayashi M. Once-daily insulin detemir added to oral antidiabetic drugs results in less weight gain and a trend for reduced hypoglycaemia in comparison to NPH insulin in Japanese patients with type 2 diabetes [abstract]. *Diabetologia* 2006;49(Suppl 1):609.
- 92. Rašlová K, Bogoev M, Raz I, Leth G, Gall MA, Hâncu N. Corrigendum to "Insulin detemir and insulin aspart: a promising basal-bolus regimen for type 2 diabetes" [Diabetes Research and Clinical Practice 66 (2004) 193–201]. *Diabetes Res Clin Pract* 2006;72(1):112.
- 93. Rachmani R, Levi Z, Slavachevski I, Avin M, Ravid M. Teaching patients to monitor their risk factors retards the progression of vascular complications in high-risk patients with Type 2 diabetes mellitus--a randomized prospective study. *Diabet Med* 2002;19(5):385-92.
- 94. Pouwer F, Snoek FJ, Heine RJ. Ceiling effect reduces the validity of the Diabetes Treatment Satisfaction Questionnaire. *Diabetes Care* 1998;21(11):2039. Available: http://care.diabetesjournals.org/cgi/reprint/21/11/2039b (accessed 2007 Oct 11).
- 95. Ge ZZ, Zhang DZ, Xiao SD, Chen Y, Hu YB. Does eradication of Helicobacter pylori alone heal duodenal ulcers? *Aliment Pharmacol Ther* 2000;14(1):53-8.
- 96. Breen KJ, Desmond PV, Whelan G. Treatment of reflux oesophagitis. A randomized, controlled evaluation of cimetidine. *Med J Aust* 1983;2(11):555-8.
- 97. Bradley C. The Diabetes Treatment Satisfaction Questionnaire: DTSQ. In: Bradley C, editor. *Handbook of psychology and diabetes: a guide to psychological measurement in diabetes research and management*. Langhorne (PA): Harwood Academic Publishers; 1994. p.111-32.
- Brunton S. Nocturnal hypoglycemia: answering the challenge with long-acting insulin analogs. MedGenMed 2007;38(2):38. Available: <u>http://www.medscape.com/viewarticle/555414</u>.
- 99. Bowker SL, Majumdar SR, Johnson JA. Systematic review of Indicators and measurements used in controlled studies of quality improvement for Type-2 diabetes. *Can J Diabetes* 2005;29(3):230-8. Available: <u>http://www.diabetes.ca/files/Johnson_Systematic_Review-pages%20230-238.pdf</u> (accessed 2007 Aug 29).
- 100. Horvath K, Jeitler K, Berghold A, Ebrahim S, Gratzer T, Plank J, et al. Long-acting insulin analogues versus NPH insulin (human isophane insulin) for type 2 diabetes mellitus. *Cochrane Database Syst Rev* 2007;(2):CD005613.
- 101. Wild D, von MR, Brohan E, Christensen T, Clauson P, Gonder-Frederick L. A critical review of the literature on fear of hypoglycemia in diabetes: implications for diabetes management and patient education. *Patient Educ Couns* 2007;68(1):10-5.
- 102. Mullins P, Sharplin P, Yki-Järvinen H, Riddle MC, Häring HU. Negative binomial meta-regression analysis of combined glycosylated hemoglobin and hypoglycemia outcomes across eleven Phase III and IV studies of insulin glargine compared with neutral protamine Hagedorn insulin in type 1 and type 2 diabetes mellitus. *Clin Ther* 2007;29(8):1607-19.
- Quik RF, Cooper MJ, Gleeson M, Hentschel E, Schuetze K, Kingston RD, et al. A comparison of two doses of nizatidine versus placebo in the treatment of reflux oesophagitis. *Aliment Pharmacol Ther* 1990;4(2):201-11.
- 104. Cochran WG. The combination of estimates from different experiments. *Biometrics* 1954;10(1):101-29.

- 105. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7(3):177-88.
- 106. Dekkers CP, Beker JA, Thjodleifsson B, Gabryelewicz A, Bell NE, Humphries TJ, et al. Double-blind comparison [correction of double-blind, placebo-controlled comparison] of rabeprazole 20 mg vs. omeprazole 20 mg in the treatment of erosive or ulcerative gastro-oesophageal reflux disease. *Aliment Pharmacol Ther* 1999;13(1):49-57.
- 107. Vcev A, Stimac D, Vceva A, Takac B, Ivandic A, Pezerovic D, et al. Pantoprazole versus omeprazole in the treatment of reflux esophagitis. *Acta Med Croatica* 1999;53(2):79-82.
- 108. Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. *Ann Intern Med* 1997;127(9):820-6.
- Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions 4.2.5 [updated May 2005]. Chichester (UK): John Wiley & Sons; 2005. Available: <u>http://www.cochrane.dk/cochrane/handbook/hbook.htm</u>.
- 110. Goodman SN. Meta-analysis in health services research. In: Armenian HK, Shapiro Seditors, editors. *Epidemiology and health services*. New York: Oxford University Press; 1998.
- Al SA. Concomitant use of insulin glargine and NPH in type-1 diabetes. *Pakistan Journal of Medical Sciences* 2006;22(2):208-10. Available: <u>http://www.pjms.com.pk/issues/aprjun06/pdf/glargine.pdf</u> (accessed 2007 Jan 9).
- 112. Al-Shaikh AA. Pregnant women with type 1 diabetes mellitus treated by glargine insulin. *Saudi Med J* 2006;27(4):563-5.
- 113. Bailey CJ, Del PS, Eddy D, Zinman B, Albetti G, Aschner PP, et al. Earlier intervention in type 2 diabetes: The case for achieving early and sustained glycaemic control. *Int J Clin Pract* 2005;59(11):1309-16.
- 114. Bhardwaj VR, Metcalfe N, Innes E, Harrison E, Jenkins D. Recurrent diabetic ketoacidosis after changing pen devices for insulin injection. *BMJ* 2006;332(7552):1259-60.
- 115. Bin-Abbas B, Al-Ashwal A, Sakati N. Continuous subcutaneous insulin infusion in type 1 diabetic Saudi children: A comparison with multiple daily insulin injections. *Ann Saudi Med* 2006;26(4):327-8.
- 116. Bin-Abbas BS, Al-Fares A, Sakati NA, Al-Ashwal AA. Comparison of insulin pump and multiple daily injection regimens in type 1 diabetic patients. *Curr Paediatr Res* 2006;10(1-2):37-9.
- 117. Cesur M, Corapcioglu D, Gursoy A, Gonen S, Ozduman M, Emral R, et al. A comparison of glycemic effects of glimepiride, repaglinide, and insulin glargine in type 2 diabetes mellitus during Ramadan fasting. *Diabetes Res Clin Pract* 2007;75(2):141-7.
- 118. Ciardullo AV, Bacchelli M, Daghio MM, Carapezzi C. Effectiveness and safety of insulin glargine in the therapy of complicated or secondary diabetes: clinical audit. *Acta Diabetol* 2006;43(2):57-60.
- 119. Danne T. Premixed biphasic insulin analogs A choice for pediatric patients with type 2 diabetes rather than type 1 diabetes? *Pediatr Diabetes* 2006;7(1):1-3.
- Erickson TN, Devine EB, O'Young TS, Hanson LJ, French B, Brennan C. Effect of switching medically vulnerable patients with uncontrolled diabetes from isophane insulin human to insulin glargine. *Am J Health Syst Pharm* 2006;63(19):1862-71.

- Friedberg SJ, Lam YW, Blum JJ, Gregerman RI. Insulin absorption: a major factor in apparent insulin resistance and the control of type 2 diabetes mellitus. *Metabolism: Clinical & Experimental* 2006;55(5):614-9.
- 122. Gerstein HC, Yale JF, Harris SB, Issa M, Stewart JA, Dempsey E. A randomized trial of adding insulin glargine vs. avoidance of insulin in people with Type 2 diabetes on either no oral glucose-lowering agents or submaximal doses of metformin and/or sulphonylureas. The Canadian INSIGHT (Implementing New Strategies with Insulin Glargine for Hyperglycaemia Treatment) Study. *Diabet Med* 2006;23(7):736-42.
- 123. Hassan KV, Rodriguez LM, Johnson SE, Tadlock S, Haymond MW, Heptulla RA. What is the effect on glycemic control when insulin glargine is mixed with lispro/aspart in the same syringe? [abstract]. Endocrine Society's 88th Annual Meeting (ENDO 2006); 2006 Jun 24; Boston. P1-606. Available: http://www.abstracts2view.com/endo/view.php?nu=ENDO06L_P1-606.
- 124. Jacober SJ, Scism-Bacon JL, Zagar AJ. A comparison of intensive mixture therapy with basal insulin therapy in insulin-naive patients with type 2 diabetes receiving oral antidiabetes agents. *Diabetes Obes Metab* 2006;8(4):448-55.
- 125. Kann PH, Wascher T, Zackova V, Moeller J, Medding J, Szocs A, et al. Starting Insulin Therapy in Type 2 Diabetes: Twice-Daily Biphasic Insulin Aspart 30 Plus Metformin versus Once-Daily Insulin Glargine Plus Glimepiride. *Experimental & Clinical Endocrinology & Diabetes* 2006;114(9):527-32.
- 126. Liedholm H, Linne AB. Insulin detemir compared with NPH insulin. No significant differences identified in the studies [in Swedish]. *Lakartidningen* 2006;103(18):1417, 1419-6.
- 127. Lofthouse M. Exenatide and insulin glargine are equally effective in patients with suboptimally controlled type 2 diabetes. *Nature Clinical Practice Endocrinology & Metabolism* 2006;2(1):7.
- Madero MF, Sastre J, Carnés J, Quirce S, Herrera-Pombo JL. IgG4-mediated allergic reaction to glargine insulin. *Allergy* 2006;61(8):1022-3.
- 129. Pickup JC, Kidd J, Burmiston S, Yemane N. Determinants of glycaemic control in type 1 diabetes during intensified therapy with multiple daily insulin injections or continuous subcutaneous insulin infusion: Importance of blood glucose variability. *Diabetes Metab Res Rev* 2006;22(3):232-7.
- 130. Rami B. Insulin glargine in diabetes mellitus type 1. Monatsschr Kinderheilkd 2006;154(6):578.
- 131. Rašlová K, Tamer SC, Clauson P, Karl D. Insulin detemir results in less weight gain than NPH insulin when used in basal-bolus therapy for type 2 diabetes mellitus, and this advantage increases with baseline body mass index. *Clin Drug Invest* 2007;27(4):279-85.
- 132. Roach P, Malone JK. Comparison of insulin lispro mixture 25/75 with insulin glargine during a 24-h standardized test-meal period in patients with Type 2 diabetes. *Diabet Med* 2006;23(7):743-9.
- 133. Rubio Terres CARA, Rodriguez J, Bolinder B, De Pablos P. Cost-utility analysis of insulin glargine compared with NPH insulin in patients with type 1 diabetes in Spain. *Diabetes* 2004;53(Suppl 2):A291-A292.
- 134. Secnik BK, Matza LS, Oglesby A, Malley K, Kim S, Hayes RP, et al. Patient-reported outcomes in a trial of exenatide and insulin glargine for the treatment of type 2 diabetes. *Health & Quality of Life Outcomes* 2006;4:8p. Available: <u>http://www.hqlo.com/content/pdf/1477-7525-4-80.pdf</u> (accessed 2007 Jan 9).
- Sneed KB, Gonzalez EC. Type 2 diabetes mellitus induced by an atypical antipsychotic medication. *J Am Board Fam Pract* 2003;16(3):251-4. Available: <u>http://www.jabfm.org/cgi/reprint/16/3/251</u> (accessed 2007 Jan 17).

- 136. Sulli N, Shashaj B. Long-term benefits of continuous subcutaneous insulin infusion in children with Type 1 diabetes: a 4-year follow-up. *Diabet Med* 2006;23(8):900-6.
- 137. Terres CRARA, Rodriguez J, Bolinder B, De Pablos P. Pharmacoeconomic analysis of insulin glargine compared with NPH insulin in patients with type 2 diabetes in Spain. *Diabetes* 2004;53 Suppl 2:A291.
- 138. Ulahannan T, Mortimer P. Successful treatment of type 1 diabetes complicated by congenital lymphoedema with continuous subcutaneous insulin infusion (CSII) and insulin analogue. *British Journal of Diabetes and Vascular Disease* 2006;6(2):95-6.
- 139. Yeldandi RR, Lurie A, Baldwin D. Comparison of once-daily glargine insulin with twice-daily NPH/regular insulin for control of hyperglycemia in inpatients after cardiovascular surgery. *Diabetes Technol Ther* 2006;8(6):609-16.
- 140. Yokoyama H, Tada J, Kamikawa F, Kanno S, Yokota Y, Kuramitsu M. Efficacy of conversion from bedtime NPH insulin to morning insulin glargine in type 2 diabetic patients on basal-prandial insulin therapy. *Diabetes Res Clin Pract* 2006;73(1):35-40.

APPENDIX 1A: SEARCH STRATEGY FROM THE TECHNOLOGY REPORT – LONG-ACTING INSULIN ANALOGUES

Long-acting insulin analogues for diabetes mellitus: meta-analysis of clinical outcomes and assessment of cost-effectiveness on long-acting insulin analogues (in press as of Sept 2007).²⁰

We obtained published literature by searching MedLine, BIOSIS Previews, PASCAL, PubMed, and the Cochrane Database of Systematic Reviews from 1990 onwards. The strategy included both longacting and short-acting insulin analogues, because initially a systematic review was to be conducted for both insulin types. However, a decision was made following the literature search to divide the project into two parts and perform separate systematic reviews on the short- and longacting insulin analogues. The search was constructed using controlled vocabulary (e.g., the National Library of Medicine's Medical Subject (MeSH)) and keyword terminology. Publication filters were used to identify specific publication types, namely controlled trials, meta-analyses, and systematic reviews. Please see below for details of the search strategy.

The original search was performed in August 2005. Alert searches were run from August onward. Alert search results from August 2005 to February 2006 are incorporated into the systematic review. Relevant results found between February 2006 and June 2007 have been included in our conclusion, but they are not included in the systematic review. We obtained grey literature by searching the web sites of regulatory agencies and health assessment and near-technology assessment agencies. Specialized databases such as the University of York NHS Centre for Reviews and Dissemination and the Latin American Caribbean Center on Health Sciences Information were also searched. We searched the Internet using the Google and Dogpile search engines and found additional information on the web sites of professional associations such as the American Association of Clinical Endocrinologists, the Canadian Diabetes Association, the American Diabetes Association, and the European Association for the Study of Diabetes along with their associated conference sites.

Guide to Search Syntax (Dialog)

- ! Explode the search term. Retrieve the search concept plus all narrower terms.
- ? Truncation symbol, single character. Retrieve plural and variant ending of search terms.
- "" Search phrases.
- () Proximity operator. Words must be adjacent.
- (I) Proximity operator. Links descriptors and subheadings.
- (n) Proximity operator. Words must be near each other in any order.
- (w) Proximity operator. Words must be adjacent.
- ab Search in article abstract.
- de Descriptor i.e., subject heading (a controlled, thesaurus term).
- dt Document type.
- id Identifier (includes CAS Registry Number and natural language indexing terms).
- rn CAS Registry Number.
- ti Search in titles.

tn Brand name.

tw Text word.

DATABASES	DATES/	SUBJECT HEADINGS/KEYWORDS
	LIMITS	
Dialog OneSearch	HUMAN	Insulin Long-Acting(I)aa/de [MeSH heading for Medline]
Medline BIOSIS Previews	1990-	OR
PASCAL		(Insulin Glargine OR Insulin Detemir)/de <i>[EMTREE terms for EMBASE]</i>
		OR
		TN=(Lantus OR Levemir) <i>[Brand names in EMBASE]</i>
		OR
		(glargine OR Lantus OR HOE()901 OR 160337()95()1)/ti,ab,id OR RN=160337- 95-1 OR (detemir OR Levemir OR NN()304 OR 169148()63()4)/ti,ab,id OR RN=169148-63-4 <i>[Textwords searched in title, abstract, identifier, registry number]</i>
		OR
		(long()acting()insulin? OR slow?()acting()insulin? OR long()acting()analog? OR slow?()acting()analog?)/ti,ab <i>[Textwords searched in title, abstract]</i>
		OR
		Insulin(I)aa/de [MeSH heading for Medline]
		OR
		(Insulin Derivative OR Insulin Aspart OR
		[EMTREE terms for EMBASE]
		OR
		TN=(Humalog OR NovoLog OR NovoRapid OR NovoMix OR Apidra) <i>[Brand names in EMBASE]</i>
		OR
		Insulin Lispro/de <i>[BIOSIS Previews thesaurus term]</i>
		OR
		(insulin?(1n)analog? OR insulin?(1n)derivat? OR new()insulin? OR

DATABASES	DATES/	SUBJECT HEADINGS/KEYWORDS
	LIMITS	
		novel()insulin?)/ti,ab
		OR
		(133107()64()9 OK insulin?(2n)(Lys?()28()B) OK (28()B()Lys?()29()B)(2n)insulin?
		OR LISPICE OR HUITIdiog: OR 628 OR 28()B()lysine()20()B()prolingingulin2)/ti ah id OP Lyspro2/ti ah OP
		insulin()Lys()B28()Pro()B29/id OR RN=133107-64-9
		OR
		(116094()23()6 OR insulin?()aspart? OR B28()asp? OR Asp()B28 OR NovoLog OR
		NovoRapid OR NovoMix?)/ti,ab OR insulin()Asp()B28/id OR RN=116094-23-6
		OR
		(insulin()glulisine OR apidra OR 207748()29()6 OR insulin()Lys()B3()Glu()B29
		OR insulin()lysyl()B3()glutamyl()B29 OR
		B3()lysyl()B29()glutamylinsulin)/ti,ab,id OR RN=207748-29-6
		OR
		(quick()acting()insulin? OR rapid()acting()insulin? OR rapidly()acting()insulin?
		OR short()acting()insulin? OR fast()acting()insulin? OR quick()acting()analog?
		OR rapid()acting()analog? OR rapidly()acting()analog? OR
		short()acting()analog? OR fast()acting()analog?)/ti,ab
		AND
		Diabetes Mellitus!/de
		[MeSH heading for Medline]
		OR
		(Insulin-Dependent Diabetes OR Insulin-Dependent Diabetes Mellitus OR
		Diabetes OR Diabetes Insipidus OR Diabetes Mellitus OR "Maturity-Onset
		Diabetes of the Young" OR Non-Insulin-Dependent Diabetes Mellitus OR
		"Gestational Diabetes" OR "Gestational Diabetes Mellitus")/de
		OR
		(Diabetes Control OR Diabetes Insipidus! OR Diabetes Mellitus! OR
		Experimental Diabetes Mellitus! OR Pregnancy Diabetes Mellitus!)/de
		[EMTREE terms for EMBASE]
		OR
		(diabet? OR IDDM OR NIDDM OR MODY OR "type 1" OR "type I" OR "type 2"
		OR "type II" OR insulin()depend?()DM OR matur?()onset()DM OR
		late()life()DM OR gestational()DM OR juvenile()onset()DM OR juvenile()DM
		OR ketosis()prone()DM OR sudden()onset()DM OR
		non()insulin()depend?()DM OR adult()onset()DM)/ti,ab

DATABASES	DATES/	SUBJECT HEADINGS/KEYWORDS
		AND
		(Controlled Clinical Trials OR Multicenter Studies OR Randomized Controlled Trials OR Double-Blind Method OR Random Allocation OR Single-Blind Method OR Placebos)/de <i>[MeSH headings for Medline]</i>
		OR
		dt=(Multicenter Study OR Randomized Controlled Trial OR Controlled Clinical Trial) <i>[Document type in Medline]</i>
		OR
		(Multicenter Study OR Randomized Controlled Trial OR Randomized Clinical Trial OR Randomized Trial OR Evidence-Based Medicine)/de [BIOSIS Previews thesaurus terms]
		OR
		(Major Clinical Study OR Multicenter Study OR Controlled Study! OR Randomized Controlled Trial)/de <i>[EMTREE terms for EMBASE]</i>
		OR
		(random? OR sham? OR placebo? OR singl?()(blind? OR dumm? OR mask?) OR doubl?()(blind? OR dumm? OR mask?) OR tripl?()(blind? OR dumm? OR mask?) OR trebl?()(blind? OR dumm? OR mask?) OR control?()(study OR studies OR trial?) OR RCT? ? OR (multicent? OR multi()cent?)()(study OR studies OR trial?))/ti,ab
		OR
		(Meta-Analysis OR Technology Assessment, Biomedical)/de [MeSH headings for Medline]
		OR
		dt=Meta-Analysis [Document type in Medline]
		OR
		Meta-Analysis/de [BIOSIS Previews thesaurus term]
		OR

DATABASES	DATES/	SUBJECT HEADINGS/KEYWORDS
		(Meta Analysis OR Systematic Review OR Biomedical Technology Assessment)/de <i>[EMTREE terms for EMBASE]</i>
		<i>OR</i> (meta()analy? OR metaanaly? OR met()analy? OR metanaly? OR health()technology()assessment? OR meta()regression? OR metaregression? OR mega()regression? OR systematic?()(literature()review? OR review? OR overview?) OR methodologic?()(literature()review? OR review? OR overview?) OR quantitative()(review? OR overview? OR synthes?) OR research()(integration? OR overview?) OR integrative(2w)(review? OR overview?) OR collaborative()(review? OR overview?) OR pool?()analy? OR data()synthes? OR data()extraction? OR data()abstraction? OR handsearch? OR hand()search? OR mantel()haenszel OR peto OR der()simonian OR dersimonian OR fixed()effect? OR latin()square?)/ti,ab
		Search performed on 3 August 2005; monthly alerts set up on Medline, EMBASE and BIOSIS Previews and were ongoing until 1 January 2006.
		<i>Total Hits=850 Records (817 "clinical results"+33 systematic review / meta- analysis results), 442 unique records after comparison with PubMed records (423 "clinical results"+19 systematic review / meta-analysis results)</i>
COCHRANE LIBRARY	1990-	Same MeSH and keywords as per Medline search, excluding study design filter. Appropriate syntax used.
		Initial search performed on 2 August 2005 and updated with subsequent database updates. Last update performed on 6 February 2006.
		<u>Total Hits=</u> Cochrane Database of Systematic Reviews=2 Records, 1 Unique DARE=2 Records, 0 Unique CENTRAL=276 Records, 13 Unique Abstracts by INAHTA and other HTAs=6 Records, 3 Unique
PUBMED	HUMAN 1990-	SAME MESH AND KEYWORDS AS PER MEDLINE SEARCH. APPROPRIATE SYNTAX USED.
		Total Hits-107 Unique Records
Web sites of health technology assessment (HTA) and related agencies; trial registries; other databases		AHRQ; National Research Register; University of York NHS Centre for Reviews and Dissemination – CRD databases; LILACS, etc.

APPENDIX 1B: LITERATURE SEARCH STRATEGY – SUPPLEMENTAL SEARCH, LONG-ACTING INSULIN

OVERVIEW	
Interface:	OVID
Databases:	BIOSIS Previews <1989 - >; EMBASE <1996 - >; OVID MEDLINE® In-Process & Other Non-Indexed Citations; OVID MEDLINE® <1966- > * Note: Subject headings have been customized for each database.
Date of Search:	December 18, 2006
Alerts:	Monthly search updates began January 2007 and ran to April 2007.
Study Types:	Randomized controlled trials
Limits:	Publication years 1990 onward Humans
SYNTAX GUIDE	
/	At the end of a phrase, searches the phrase as a subject heading
.sh	At the end of a phrase, searches the phrase as a subject heading
MeSH	Medical Subject Heading
fs	Floating subheading
exp	Explode a subject heading
\$	Truncation symbol, or wildcard: retrieves plural or variations of a word
*	Indicates that the marked subject heading is a primary topic
?	Truncation symbol for one or no characters only
ADJ	Requires words are adjacent to each other (in any order)
ADJ#	Adjacency within # number of words (in any order)
.ti	Title
.ab	Abstract
.hw	Heading Word; usually includes subject headings and controlled vocabulary
.pt	Publication type
.rn	CAS registry number
.af	All fields

MULTIFILE SEARCH STRATEGIES:

Medline, Medline Daily Update, Medline In-Process, EMBASE, BIOSIS Previews

Search Syntax:

1. Long-acting insulin AND Short-acting insulin AND RCT Filter

2. Glargine AND Detemir AND RCT Filter

Supplemental Search 1: LA and RA:

Long-Acting Insulin

1. Insulin Long-Acting/aa

2. (long acting insulin\$ or long acting analog\$ or slow\$ acting insulin\$ or slow\$ acting analog\$).ti,ab,hw.

3. (glargine or Lantus or Optisulin or hoe 901 or 160337-95-1).ti,ab,rn,tn,hw.

4. (detemir or determir or Levemir or nn 304 or 169148-63-4).ti,ab,rn,tn,hw.

5. or/1-4

Rapid-Acting Insulin

6. (short acting insulin\$ or quick acting insulin\$ or rapid acting insulin\$ or rapidly acting insulin\$ or fast acting insulin\$ or quick acting analog\$ or rapid acting analog\$ or rapidly acting analog\$ or short acting analog\$ or fast acting analog\$).ti,ab,hw.

7. (Lispro or Lyspro or Humalog or Liprolog or "Lys(B28),pro(B29)or 133107-64-9").ti,ab,rn,tn,hw.

8. (Insulin Aspart or "Asp(B28)" or 116094-23-6 or NovoLog or NovoRapid or NovoMix).ti,ab,rn,tn,hw.

9. (Glulisine or 207748-29-6 or Apidra).ti,ab,rn,tn,hw.

10. or/6-9

Supplemental Search 2: Glargine versus Detemir

(glargine or Lantus or Optisulin or hoe 901 or 160337-95-1).ti,ab,rn,tn,hw (detemir or determir or Levemir or nn 304 or 169148-63-4).ti,ab,rn,tn,hw

RCT Filters:

MedLine

16. Randomized Controlled Trial.pt.

17. Randomized Controlled Trials/

18. (random\$ or sham\$ or placebo\$ or (singl\$ adj (blind\$ or dumm\$ or mask\$)) or (doubl\$ adj (blind\$ or dumm\$ or mask\$))).ti,ab.

19. ((tripl\$ adj (blind\$ or dumm\$ or mask\$)) or (trebl\$ adj (blind\$ or dumm\$ or mask\$))).ti,ab.

20. (randomi?ed control\$ trial? or rct?).ti,ab.

21. or/16-20

EMBASE

22. Randomized Controlled Trial/

23. (random\$ or sham\$ or placebo\$ or (singl\$ adj (blind\$ or dumm\$ or mask\$)) or (doubl\$ adj (blind\$ or dumm\$ or mask\$))).ti,ab.

24. ((tripl\$ adj (blind\$ or dumm\$ or mask\$)) or (trebl\$ adj (blind\$ or dumm\$ or mask\$))).ti,ab.

25. (randomi?ed control\$ trial? or rct?).ti,ab.

26. or/22-25

BIOSIS Previews

27. randomi?ed control\$ trial?.ti,ab,hw.

28. (random\$ or sham\$ or placebo\$ or (singl\$ adj (blind\$ or dumm\$ or mask\$)) or (doubl\$ adj (blind\$ or dumm\$ or mask\$))).ti,ab,hw.

29. ((tripl\$ adj (blind\$ or dumm\$ or mask\$)) or (trebl\$ adj (blind\$ or dumm\$ or mask\$))).ti,ab,hw.

30. or/27-29

OTHER DATABASES	
Cochrane Library	Same MeSH, keywords, and date limits used as per
lssues 3, 2007	Medline search, excluding study types and Human
	restrictions. Syntax adjusted for Cochrane Library
ECRI <u>www.ecri.org</u>	databases.

GREY LITERATURE AND HANDSEARCHING				
Dates for Search:	August 2005 to June 2007			
Keywords:	Long acting insulin; insulin brand names and substance names			

This section lists the main agencies, organizations, and web sites searched; it is not a complete list.

Health Technology Assessment Agencies

Alberta Heritage Foundation for Medical Research (AHFMR) <u>http://www.ahfmr.ab.ca</u>

Agence d'evaluation des technologies et des modes d'intervention en santé (AETMIS), Québec <u>http://www.aetmis.gouv.qc.ca</u>

Canadian Agency for Drugs and Technologies in Health (CADTH) <u>http://www.cadth.ca</u>

Centre for Evaluation of Medicines (Father Sean O'Sullivan Research Centre, St.Joseph's Healthcare, Hamilton, and McMaster University, Faculty of Health Sciences, Hamilton, Ontario) <u>http://www.thecem.net/</u>

Centre for Health Services and Policy Research, University of British Columbia <u>http://www.chspr.ubc.ca/cgi-bin/pub</u>

Health Quality Council of Alberta (HQCA) <u>http://www.hqca.ca</u>

Health Quality Council, Saskatchewan http://www.hqc.sk.ca/

Institute for Clinical Evaluative Sciences (ICES), Ontario http://www.ices.on.ca/

Institute of Health Economics (IHE), Alberta http://www.ihe.ab.ca/

Manitoba Centre for Health Policy (MCHP) http://www.umanitoba.ca/centres/mchp/

Ontario Ministry of Health and Long Term Care, Health Technology Reviews <u>http://www.health.gov.on.ca/english/providers/program/mas/tech/tech_mn.html</u> The Technology Assessment Unit of the McGill University Health Centre http://www.mcgill.ca/tau/

Therapeutics Initiative, Evidence-Based Drug Therapy, University of British Columbia <u>http://www.ti.ubc.ca</u>

Health Technology Assessment International (HTAi) <u>http://www.htai.org</u>

International Network for Agencies for Health Technology Assessment (INAHTA) <u>http://www.inahta.org</u>

WHO Health Evidence Network http://www.euro.who.int/HEN

Australian Safety and Efficacy Register of New Interventional Procedures – Surgical (ASERNIP-S) <u>http://www.surgeons.org/Content/NavigationMenu/Research/ASERNIPS/default.htm</u>

Centre for Clinical Effectiveness (Monash University) http://www.med.monash.edu.au/healthservices/cce/

Medicare Services Advisory Committee (Department of Health and Aging) http://www.msac.gov.au/

NPS RADAR (National Prescribing Service Ltd.) http://www.npsradar.org.au/site.php?page=1&content=/npsradar%2Fcontent%2Farchive_alpha.html

ITA - Institute of Technology Assessment http://www.oeaw.ac.at/ita/index.htm

Danish Centre for Evaluation and Health Technology Assessment (DCEHTA), National Board of Health <u>http://www.dihta.dk/</u>

Finnish Office for Health Care Technology and Assessment (FinOHTA), National Research and Development Centre for Welfare and Health <u>http://finohta.stakes.fi/EN/index.htm</u>

L'Agence nationale d'accréditation et d'évaluation en santé (ANAES), Ministère de la Santé, de la Famille et des Personnes handicapées http://www.anaes.fr/anaes/anaesparametrage.nsf/HomePage?ReadForm

Committee for Evaluation and Diffusion of Innovative Technologies (CEDIT) <u>http://cedit.aphp.fr/english/index_present.html</u>

German Institute for Medical Documentation and Information (DIMDI), Federal Ministry of Health <u>http://www.dimdi.de/static/de/hta/db/index.htm</u>

Health Service Executive

http://www.hebe.ie/ProgrammesProjects/HealthTechnologyAssessment

College voor Zorgverzekeringen/Health Care Insurance Board (CVZ) http://www.cvz.nl

Health Council of the Netherlands <u>http://www.gr.nl</u>

New Zealand Health Technology Assessment Clearing House for Health Outcomes and Health Technology Assessment (NZHTA) http://nzhta.chmeds.ac.nz/

Norwegian Centre for Health Technology Assessment (SMM) http://www.kunnskapssenteret.no/index.php?show=38&expand=14,38

Agencia de Evaluación de Tecnologías Sanitarias (AETS), Instituto de Salud Carlos III / Health Technology Assessment Agency <u>http://www.isciii.es/htdocs/investigacion/Agencia_quees.jsp</u>

Basque Office for Health Technology Assessment (OSTEBA), Departemento de Sanidad <u>http://www.osasun.ejgv.euskadi.net/r52-2536/es/</u>

Catalan Agency for Health Technology Assessment and Research (CAHTA) <u>http://www.aatrm.net/html/en/Du8/doc7850.html</u>

CMT - Centre for Medical Technology Assessment http://www.cmt.liu.se/pub/jsp/polopoly.jsp?d=6199&l=en

Swedish Council on Technology Assessment in Health Care (SBU) http://www.sbu.se/www/index.asp

Swiss Network for Health Technology Assessment http://www.snhta.ch/about/index.php

European Information Network on New and Changing Health Technologies (EUROSCAN), University of Birmingham. National Horizon Scanning Centre <u>http://www.euroscan.bham.ac.uk</u>

National Horizon Scanning Centre (NHSC) http://www.pcpoh.bham.ac.uk/publichealth/horizon

NHS Health Technology Assessment / National Coordinating Centre for Health Technology Assessment (NCCHTA), Department of Health R&D Division http://www.hta.nhsweb.nhs.uk

NHS National Institute for Clinical Excellence (NICE) http://www.nice.org.uk

NHS Quality Improvement Scotland http://www.nhshealthquality.org University of York NHS Centre for Reviews and Dissemination (NHS CRD) <u>http://www.york.ac.uk/inst/crd</u>

The Wessex Institute for Health Research and Development, Succinct and Timely Evaluated Evidence Review (STEER) http://www.wihrd.soton.ac.uk/

West Midlands Health Technology Assessment Collaboration (WMHTAC) http://www.publichealth.bham.ac.uk/wmhtac/

Agency for Healthcare Research and Quality (AHRQ) <u>http://www.ahrq.gov/</u>

Department of Veterans Affairs Research & Development, general publications http://www1.va.gov/resdev/prt/pubs_individual.cfm?webpage=pubs_ta_reports.htm

VA Technology Assessment Program (VATAP) http://www.va.gov/vatap/

Institute for Clinical Systems Improvement http://www.icsi.org/index.asp

Technology Evaluation Center (Tec), BlueCross BlueShield Association http://www.blu ecares.com/tec/index.html

University HealthSystem Consortium (UHC) http://www.uhc.edu/

Health Economic

Bases CODECS (Connaissances et décisions en économie de la santé) Collège des économistes de la santé, INSERM http://www.inserm.fr/codecs/codecsanglais.nsf/(Web+English+Startup+Page)?OpenForm

Centre for Health Economics and Policy Analysis (CHEPA), Department of Clinical Epidemiology and Biostatistics, Faculty of Health Sciences, McMaster University, Canada <u>http://www.chepa.org</u>

Health Economics Research Group (HERG), Brunel University, UK http://www.brunel.ac.uk/about/acad/herg

Health Economics Research Unit (HERU), University of Aberdeen http://www.abdn.ac.uk/heru/

The Hospital for Sick Children (Toronto), PEDE Database <u>http://pede.bioinfo.sickkids.on.ca/pede/index.jsp</u>

University of Connecticut, Department of Economics, RePEc database. <u>http://ideas.repec.org</u>
Conferences

Endocrine abstracts: http://www.endocrine-abstracts.org/ea/default.htm

American Association of Clinical Endocrinologists Annual Meeting and Clinical Congress (AACE) <u>http://www.aace.com/calendar.php</u>

American Diabetes Association (ADA) Scientific Sessions http://scientificsessions.diabetes.org/index.cfm?fuseaction=Custom.Content&MenuID=1000

European Association for the Study of Diabetes, Annual Meeting http://www.easd.org/

Association of British Clinical Diabetologists www.diabetologists.org.uk

ENDO (Endocrine Society) Conference http://www.abstracts2view.com/endo/

Societies/Organizations/Associations

Canadian Diabetes Association <u>http://www.diabetes.ca/</u>

American Diabetes Association http://www.diabetes.org

Search Engines

Google http://www.google.ca/

APPENDIX 2A: CADTH TECHNOLOGY REPORT STUDY SELECTION CRITERIA

- Study design: Randomized controlled trials (RCT) or observational studies
- Population group(s): Patients with diabetes mellitus (type 1, type 2, or GDM)
- Intervention: Long-acting insulin analogues (IGlar or IDet)
- Comparator: Conventional HI or oral antidiabetic agents
- Outcome: Glycemic control [glycosylated hemoglobin (HbA1c) level, BG level], quality of life (QoL), hypoglycemic episodes, adverse events, complications of diabetes, or mortality

APPENDIX 2B: COMPUS STUDY SELECTION CRITERIA

Inclusion criteria

- Study design Randomized controlled trial (RCT)
- Population Patients with type 1 or type 2 DM or GDM
- Intervention combination of (insulin glargine or insulin detemir) and (insulin aspart or insulin lispro or insulin glulisine)
- Comparator combination of an intermediate- or long-acting HI (e.g., insulin isophane) and short-acting HI
- If additional insulins or antidiabetic agents are administered, they are administered equally in both the intervention and comparator arms
- Outcomes Glycemic control (HbA1c level and BG level), quality of life (QoL), hypoglycemic episodes, adverse events, complications of diabetes, and mortality

Exclusion criteria:

• Treatment duration less than four weeks

For clinical research question 6, the same inclusion and exclusion criteria described above will be used except that the intervention and comparator of interest will differ as follows:

- Intervention insulin glargine (or insulin detemir)
- Comparator insulin detemir (or insulin glargine)

APPENDIX 3: RCT STUDY QUALITY ASSESSMENT TOOL

Projec	t:	Statement #:	Author:							
Title:										
Review	wer:	Date:	RefMan #:							
Jadad	five-point scale:									
No.	Category			Score						
1	Randomization:									
	Was the study described as rar randomization)? A trial reporti No=0	ndomized (i.e., including words such as r ng that it is "randomized" is to receive o	andomly, random, ne point. Yes=1 or							
	Trials describing an appropriat computer generated) receive a	e method of randomization (table of ran n additional point. Appropriate=1 or No	ndom numbers, Appropriate=0							
	If the report describes the trial as randomized and uses an inappropriate method of randomization (e.g., date of birth, hospital numbers), a point is deducted. Inappropriate=-1									
Total	Randomization Score:									
2	Double-blinding:									
	Was the study described as do receive one point. Yes=1 or No=	uble-blind? A trial reporting that it is "do =0.	ouble-blind" is to							
	Trials describing an appropriat shape, taste) are to receive an	e method of double-blinding (identical additional point. Yes=1 or No=0	olacebo: colour,							
	If the report describes a trial as comparison of tablets versus in Inappropriate=-1	double-blind and uses an inappropriate njection with no dummy), a point is ded	e method (e.g., ucted.							
Total	Double-Blinding Score:									
3	Withdrawals and dropouts:									
	Was there a description of withdrawals and dropouts? A trial reporting the number and reasons for withdrawals or dropouts is to receive one point. If there is no description, no point is given. Yes=1 or No=0									
Total	Jadad Score:									

Addit	ional Items of Interest:	
4	Adequacy of allocation concealment:	Adequacy Level
	Central randomization; numbered or coded bottles or containers; drugs prepared by a	
	pharmacy, serially numbered, opaque, sealed envelopes, etc.=Adequate	
	Alternation; reference to case record # or date of birth, etc.=Inadequate	
	Allocation concealment is not reported or fits neither category=Unclear	
5	Blinding of outcome assessor:	
	Was the outcome assessor blinded?	
6	Analyses: Intention-to-treat:	
	Was ITT analysis used?	

APPENDIX 4: CLINICAL DATA EXTRACTION FORM

Reviewer initials:	Ref ID:
Reference (Author, Year, Source, Publication, status)	
Trial characteristics	
Study design	
No. of centres	
Country	
Sponsor	
No. of patients	
Type of diabetes	
Disease state	
Investigator's definition of hypoglycemia	
Procedure	
Other	

Patient characteristics					
Category	Unit	Treatment	Control	All Arms	Comment
				Combined	
Age					
Male/Female					
Duration of diabetes					
Baseline HbA1c					
Baseline BMI					
Race/Ethnicity					
Withdrawals or lost to					
follow-up					
Other					

Outcomes and cost data	Outcomes and cost data											
Category	Units	Treatment	Control	Comment								
HbA1c												
BG												
Hypoglycemia												
Diabetic complications												
Adverse events												
Mortality												
QoL												
Cost												
Other												

BG=blood glucose; BMI=body mass index; HbA1c=glycosylated hemoglobin; QoL=quality of life.

APPENDIX 5: META-ANALYTIC METHODS

The meta-analytic methods most commonly used to investigate the effectiveness of health care interventions are those presented by Cochrane *et al.*^{103,104} and DerSimonian and Laird¹⁰⁵ Those methods involve combining results of individual randomized controlled trials (RCTs) to provide a comparison of success rates between two drugs and an estimation of the effect size.^{106,107}

There are two statistical models available for meta-analytic studies, the fixed effects model and the random effects model. To determine the appropriate model for the meta-analysis, it will be necessary to make assumptions about the data that are to be combined. The fixed effects model is based on the mathematical assumption that all the studies to be included in the meta-analysis use identical methods, patients, and methods and are evaluating the same effect. That is, the effect is the same in all studies, and the results of the studies vary randomly around the true common fixed effect. The diversity around the true common fixed effect is called the *within-study* variance.^{105,108} Thus, fixed effect models consider only *within-study* variability.

The random effects model does not make the same assumptions as the fixed effect model. It deals with the lack of knowledge about why real, or apparent, treatment effects differ by considering the differences as if they were random. The model assumes that 1) the studies included in the metaanalysis are a random sample from all possible studies, 2) the true effects observed in each study may be different from each other, and 3) those differences are normally distributed. The differences are called random effects and describe the *between-study* variation.¹⁰⁸⁻¹¹⁰ Thus, random effects models consider both *between-study* and *within-study* variability. This method of combining results weights by sample size and adjusts for between study variance, serving to reduce the impact of between study differences.¹⁰⁷ The underlying assumption of this model is that the true effect (outcome) of each study is different; that is, not all studies are measuring the same effect. The model assumes that there may be differences between studies due to study aspects including different populations and different methods of outcome assessment. Despite the differences between studies, it is assumed that the degree of difference is so great as to make the estimated common effect meaningless.¹⁰⁴

Forest plots will be generated wherever appropriate to determine if heterogeneity exists between the results of an individual study included in the review. If significant heterogeneity does exist, the reasons for heterogeneity (e.g., study design, population characteristics, study quality) will be explored. Should significant variation between studies be observed, analysis of subgroups based on factors potentially responsible for heterogeneity will be attempted and the influence of these factors will be assessed. If outliers are present, then results will be pooled with and without the outliers to investigate their impact on the overall result. If necessary, sensitivity analysis will be performed to investigate the robustness of the results of statistical synthesis by estimating and comparing the effects of the intervention in different trial categories (grouped by publication status, quality, publication year, etc.).

APPENDIX 6: REASONS FOR STUDY EXCLUSION

Study	Reason for Exclusion
Al, 2006 ¹¹¹	Non-RCT
Al-Shaikh, 2006 ¹¹²	Non-RCT
Bailey <i>et al.</i> , 2005 ¹¹³	Non-RCT
Bhardwaj <i>et al.</i> , 2006 ¹¹⁴	Non-RCT
Bin-Abbas <i>et al.</i> , 2006 ¹¹⁵	Non-RCT
Bin-Abbas <i>et al.</i> , 2006 ¹¹⁶	Non-RCT
Cesur <i>et al.</i> , 2007 ¹¹⁷	Non-RCT
Ciardullo <i>et al.</i> , 2006 ¹¹⁸	Non-RCT
Danne, 2006 ¹¹⁹	Non-RCT
Erickson <i>et al.</i> , 2006 ¹²⁰	Non-RCT
Friedberg <i>et al.</i> , 2006 ¹²¹	Non-RCT
Gerstein <i>et al.</i> , 2006 ¹²²	Not an appropriate comparison
Hassan <i>et al.</i> , 2006 ¹²³	Not an appropriate comparison
Jacober <i>et al.</i> , 2006 ¹²⁴	Not an appropriate comparison
Kann <i>et al.</i> , 2006 ¹²⁵	Not an appropriate comparison
Liedholm <i>et al.</i> , 2006 ¹²⁶	Non-RCT
Lofthouse, 2006 ¹²⁷	Non-RCT
Madero <i>et al.</i> , 2006 ¹²⁸	Non-RCT
Pickup <i>et al.</i> , 2006 ¹²⁹	Non-RCT
Rami, 2006 ¹³⁰	Non-RCT
Rafilová <i>et al.</i> ,2007 ¹³¹	Non-RCT
Roach and Malone, 2006 ¹³²	Not an appropriate comparison
Rubio Terres <i>et al.</i> , 2004 ¹³³	Non-RCT
Secnik <i>et al.</i> , 2006 ¹³⁴	Not an appropriate comparison
Sneed and Gonzalez, 2003 ¹³⁵	Non-RCT
Sulli and Shashaj, 2006 ¹³⁶	Non-RCT
Terres <i>et al.</i> , 2004 ¹³⁷	Non-RCT
Ulahannan and Mortimer, 2006 ¹³⁸	Non-RCT
Yeldandi <i>et al.</i> , 2006 ¹³⁹	Non-diabetic population
Yokoyama <i>et al.</i> , 2006 ¹⁴⁰	Not an appropriate comparison
Zhou, 2006 ⁶⁷	Not an appropriate comparison

RCT=randomized controlled trial.

APPENDIX 7A: STUDY CHARACTERISTICS OF RCTS IN TYPE 1 DM

Study	Study Period and Type	Sponsor	Countries	Comparators	No. of Patients	Withdrawals	Age, Years	% Male	Race/ Ethnicity	Duration of DM, Years
Ashwell <i>et al.</i> ,	16-week, open-	Aventis	UK and USA	IGlar+ILis	54	2	41.1±12.2*	37	NR	21.6±13.1*
2006 ⁶⁴	label, crossover			NPH+unmodified HI	54	1				
Bolli <i>et al.,</i> 2006 ⁶³	6-month, open- label, parallel	Sanofi- Aventis	Italy	IGlar+ILis	85	NR	35.5 [18 to 57] [‡]	59	NR	13.1 [1.2 to 37.6]‡
				NPH+ILis	90	NR	36.3 [19 to 58]‡	54	NR	14.3 [2.4 to 48.1] [‡]
Chase <i>et al.</i> ,	16-week, open-	NR	USA	IGlar+ILis	85	NR	13*	NR	71% white	5.5
200633	label, crossover			NPH or lente+ILis	90					
Davies <i>et al.</i> ,	16-week, open-	NR	UK	lGlar+lAsp	57	NR	42.7±12.5*	55	almost all	17.9±12*
200550	label, crossover	l, crossover		NPH (Insulatard)+ IAsp	57				white European patients	
De Leeuw <i>et</i> <i>al.</i> , 2005 ⁴⁰	12-month, open- label, parallel	Novo Nordisk	Multiple European	IDet+IAsp	216	5	40.1±12.8*	57	100% Caucasian	17.8±9.7*
			countries	NPH+IAsp	99	3	40.8±13.2*	52	100% Caucasian	16.6±10.2*
Fulcher <i>et al.</i> ,	30-week, single	Aventis	Australia	IGlar+ILis	62	14	41.6±12.9*	39	NR	17.9±10.5*
200560	blind, parallel			NPH+ILis	63	4	39.3±13.9*	40	NR	17.1±9.7*
Garg <i>et al.,</i> 1998 ⁵³	4-week, open- label, parallel	NR	USA	IGlar+HI	9	NR	24.6±2.9 [†]	NR	NR	9.8±6.0
				NPH+HI	5	NR	23.8±3.8	NR	NR	12.3±6.7
Hermansen <i>et</i>	12-month, open-	Novo	Denmark	IDet+HI	59	3	34.5 [19 to	82	100%	14.8 [2.6 to
<i>al.</i> , 200 ⁴³	label, parallel	Nordisk		NPH+HI			52]⁺		Caucasian	47.8]⁺
Hermansen <i>et</i>	18-week, open-	Novo	Multiple	IDet+IAsp	298	9	38.8±13.5*	61	NR	15.4±10.1*
<i>al.</i> , 2004 ⁴⁹	label, parallel	Nordisk	European countries	NPH+regular insulin	297	14	39.3±12.9*	65	NR	15.1±10.4
Hershon <i>et al.</i> , 2004 ⁵⁴	28-week, open- label, parallel	Aventis	USA	IGlar+HI	195	24	37.9±12.6*	50	94.9% Caucasian	18.2±11.5*

Study	Study Period and Type	Sponsor	Countries	Comparators	No. of Patients	Withdrawals	Age, Years	% Male	Race/ Ethnicity	Duration of DM, Years
				NPH+HI	199	16	37.8±11.4*	49	96.5% Caucasian	16.7±9.5*
Home <i>et al.</i> ,	28-week, open-	Aventis	UK	IGlar+HI	292	16	39±12*	55	NR	16a±12*
200555	label, parallel			NPH+HI	293	21	39±12*	57	NR	15±9
Home <i>et al.</i> ,	16-week, open-	Novo	Australia and	IDet _{12h}	137	5	40.9±13.0*	52	NR	17.1±10.6*
2004 ⁴¹	label, parallel	Nordisk	Europe	IDet _{m+b}	139	4	41.3±11.4*	57	NR	17.6±10.7*
				NPH _{m+b}	132	8	38.3±12.4*	53	NR	15.1±10.6*
Kawamura <i>et</i>	16-week,	NR	Japan	IGlar	64	NR	8 to 21	NR	NR	NR
<i>al.</i> , 2005 ³¹	crossover			NPH	NR	NR	NR	NR	NR	NR
Kolendorf <i>et</i> <i>al.</i> , 2006 ³⁹	16-week, open- label, parallel	Novo Nordisk	Australia, Europe, and	IDet+IAsp	130	7	39.2±12.3*	54	93.8% Caucasian	16.6±10.2*
			South Africa	NPH+IAsp						
Kudva <i>et al.,</i> 2005 ⁶⁵	16-week, open- label, parallel	Aventis, Medtronic	USA	IGlar+IAsp	24 ran- domized;	2	43 [24 to 72] [‡]	46	NR	16 [3 to 54] [‡]
				UL+IAsp	22 evaluated					
Mianowska <i>et</i>	16-week, open-	NR	Poland	IGlar	14	NR	10.4*	50	NR	6.9*
<i>al.</i> , 2006 ³⁵	label, parallel			NPH			(range: 6 to 12)			(range: 2 to 1)
Murphy <i>et al.,</i> 2003 ³⁶	16-week, open- label, crossover	Aventis	UK	IGlar+ILis	26	1	14.8	44	NR	7·3 [*] (range:1.8 to 15)
				NPH+HI	26	NR	NR	NR	NR	NR
Pesic <i>et al.</i> ,	16-week, open-	NR	Serbia and	IGlar	18	NR	27	NR	NR	NR
200651	label, parallel		Montenegro	NPH (q.d.)	15					
				NPH (b.i.d.)	15					
Pieber <i>et al.,</i> 2000 ⁵²	4-week, partial blinding, parallel	Novo Nordisk	European countries	HOE901 [30]+ HI	110	0	35.6 [18 to 68] [‡]	56	NR	Median: 11 [1 to 36] [‡]

Study	Study Period and Type	Sponsor	Countries	Comparators	No. of Patients	Withdrawals	Age, Years	% Male	Race/ Ethnicity	Duration of DM, Years
				HOE901 [80]+HI	113	0	37.5 [19 to 70] [‡]	66	NR	Median: 8 [1 to 48] [‡]
				NPH+HI	110	o	35.7 [20 to 61] [‡]	62	NR	Median: 11 [2 to 48] [‡]
Pieber <i>et al.</i> , 2005 ⁴²	16-week, open- label, parallel	Novo Nordisk	7 European countries	IDet _{m+d} +IAsp	139	7	39.0±12.4*	56	NR	14.4±10.8*
				IDet _{m+b} +IAsp	132	10	40.4±11.4*	68	NR	15.9±10.3*
				NPH _{m+b} +IAsp	129	4	41.1±11.9*	57	NR	14.4±9.2*
Pieber <i>et al.,</i> 2007 ⁴⁸	26-week, open- label, parallel	Novo Nordisk	3 European countries,	IDet+IAsp	161	14 (8.7)	40 [18 to 79] [‡]	55	NR	17 [1 to 57] [‡]
			South Africa	lGlar+lAsp	159	15 (9.4)	41 [18 to 70]‡	48	NR	16 [1 to 48] ‡
Porcellati <i>et al.,</i> 2004 ⁶¹	1-year, open- label, parallel	National Ministry	Italy	IGlar (dinner time)+ILis	61	0	36±1.0 [†]	56	NR	13±0.3 [†]
		of Scientific Research		NPH (4 times/day)+ILis	60	0	34±1.0 [†]	55	NR	15±0.3 [†]
Raskin <i>et al.,</i> 2000 ⁵⁹	16-week, open- label, parallel	Hoechst Marion	Canada, USA	IGlar+ILis	310	15	38.9±12.2*	49	96.5% Caucasian	18.7±11.5*
		Roussel		NPH+ILis	309	16	39.5±12.2*	52	97.4% Caucasian	18.4±11.8*
Ratner <i>et al.</i> ,	28-week, open-	Hoechst	USA	All	534	53	38.5±12.0*	51	NR	17.4±10.85*
200056	label, parallel	Marion		IGlar+HI	264	31	38.2±12.2*	53	NR	17.9±11.66*
		Roussei		NPH+HI	270	22	38.9±11.9*	48	NR	16.9±10.0*
Robertson <i>et</i>	26-week, open-	Novo	16 European	IDet+IAsp	232	6	11.9±2.8*	51	NR	5.1±3.1*
<i>al.</i> , 2007 ³⁰	label, parallel	Nordisk	countries and Israel	NPH+IAsp	115	6	11.7±2.7*	48	NR	4.8±2.8*
Rosenstock <i>et al.</i> , 2000 ⁵⁷	4-week, double- blind, parallel	Aventis	USA	HOE901 [30]+HI	82	0	37.5±11.7*	51	92.7% Caucasian	16.7±11.3*
				HOE901 [80]+HI	86	0	37.0±11.5*	51	94.2% Caucasian	15.8±10.0*

Study	Study Period and Type	Sponsor	Countries	Comparators	No. of Patients	Withdrawals	Age, Years	% Male	Race/ Ethnicity	Duration of DM, Years
				NPH+HI	88	1	37.9±12.5*	53	94.3% Caucasian	16.3±10.8*
Rossetti <i>et al.,</i> 2003 ⁶²	3-month, open- label, parallel	National Ministry of	Italy	IGlar (dinner time)+ILis	17	NR	31.3±3.4 [†]	47	NR	12.9±2.3 [†]
		Scientific Research		IGlar (bedtime)+ILis	17	NR	34.0±3.1 [†]	59	NR	$14.8 \pm 2.3^{\dagger}$
				NPH (4 times/day)+ILis	17	NR	32.0±3.0 [†]	53	NR	13.1±1.9 [†]
Russell-Jones	6-month, open-	Novo	Europe and	IDet+HI	491	27	40.9±12.4*	66	NR	17.1±11.3*
<i>et al.</i> , 2004 ⁴⁵	label, parallel	Nordisk	Australia	NPH+HI	256	22	39.8±12.3*	61	NR	16.4±9.5*
Schober <i>et al.</i> ,	28-week, open-	Aventis	9 European	IGlar+HI	174	0	11.8±2.46*	56	NR	5.0±3.02*
2002 ³²	label, parallel	rallel	countries and South Africa	NPH+HI	175	0	11.5±2.36*	48	NR	4.7±3.08*
Standl <i>et al.</i> ,	6-month	Novo	Europe,	IDet+HI	154	20	40.7±13.4*	62	NR	16.1±9.1*
200446	treatment+6- month extension, open- label, parallel	Nordisk	Australia, and New Zealand	NPH+HI	134	17	42.5±12.3*	66	NR	16.0±10.6*
Vague <i>et al.</i> ,	6-month, open-	Novo	5 European	IDet+IAsp	301	17	38.9±13.3*	54	NR	17.1±9.9*
200344	label, parallel	Nordisk	countries	NPH+IAsp	146	5	41.8±14.2*	51	NR	17.4±11.0*
White <i>et al.,</i> 2006 ³⁴	24-week, open- label, parallel	NR	USA	lGlar	175	NR	13.2	49	91% Caucasian	5.4
				NPH or lente		NR	13.4	58	89% Caucasian	4.9
Witthaus <i>et al.</i> ,	28-week, open-	Aventis	10 European	IGlar+HI	261	NR	40.1±12.31*	54	NR	NR
2001 ⁵⁸	label, parallel		countries	NPH+HI	256	NR	39.4±11.9*	57	NR	NR

*mean±SD; [†]mean±SE; [‡]mean[range]. 12h=12 hour interval; b.i.d.=twice a day; DM=diabetes mellitus; HI=human insulin; HSI=human soluble insulin; IAsp=insulin aspart; IDet=insulin detemir; IGIar=insulin glargine; ILis=insulin lispro; m+b=morning and bedtime; m+d=morning and dinner time; NPH=neutral protamine Hagedorn; q.d.=every day; RCTs=randomized controlled trials; NR=not reported; UL=ultralente.

APPENDIX 7B: STUDY CHARACTERISTICS OF RCTS IN ADULT TYPE 2 DM

Study	Study Period and Type	Sponsor	Countries	Comparators	No. of Patients	Withdrawals	Age, Year	% Male	Race/Ethnicity	Duration of Diabetes, Year	
Eliaschewitz <i>et</i> <i>al.</i> , 2006 ⁷⁷	24-week, open-	Sanofi- Aventis	10 Latin American	IGlar+glimepiride	231	13	56.1±9.9*	43	43.7% Caucasian	10.3±6.4*	
	label, parallel		countries	NPH+glimepiride	250	6	57.1±9.6*	38	48.4% Caucasian	10.8±6.4*	
Fonseca <i>et al.,</i> 2004 ⁷⁵	28-week, open-	Aventis	USA	IGlar+HI	52	5	57.3±8.68*	48	82.7% Caucasian	12.4±10.02*	
[Subgroup analysis of Rosenstock <i>et</i> <i>al.</i> ⁷⁴]	label, parallel			NPH+HI	48	2	58.5±9.8*	67	85.4% Caucasian	12.7±9.25*	
Fritsche <i>et al.,</i> 2003 ⁷⁸	24-week, open-	Aventis	13 European	IGlar (morning)+Glim	236	11	61±9*	52	NR	9.0** [o to 38] [‡]	
	label, parallel	label, parallel		countries	IGlar (bedtime)+Glim	227	17	60±9*	58	NR	8.2** [1 to 51] [‡]
				NPH (bedtime)+Glim	232	27	62±9*	51	NR	9.3** [1 to 39] [‡]	
Haak, 2005 ⁶⁸	26-week,	Novo	5	IDet+IAsp	341	26	60.6±8.7*	48	99% Caucasian	12.9±7.4*	
	open- label, parallel	Nordisk	European countries	NPH+IAsp	164	8	60.0±8.4*	57	98.8% Caucasian	13.7±8.0*	
Hermansen <i>et</i> <i>al.</i> , 2006 ⁶⁹	24-week, open-	Novo Nordisk	10 European	IDet+OGLD	237	10	61.3±9.1*	49	97.9% Caucasian	9.6±6.6*	
	label, parallel		countries	NPH+OGLD	238	14	60.4±9.3*	57	99.6% Caucasian	9.8±6.2*	
Massi Benedetti <i>et</i>	52-week, open-	Aventis	14 European	IGlar+OAD	289	12	59.6±9.3*	53	NR	10.2±6.2*	
<i>al.</i> , 2003 ⁸¹	label, parallel		countries and South Africa	NPH+OAD	281	29	59.4±9.1*	54	NR	10.5±6.0*	
Meneghini <i>et</i>	48-week,	NR	USA	lGlar	253	80	53	NR	NR	5.9	

Study	Study Period	Sponsor	Countries	Comparators	No. of Pati <u>ents</u>	Withdrawals	Age, Year	% Male	Race/Ethnicity	Duration of Diabetes, Year
	and Type									
				Pioglitazone						
Meneghini <i>et</i>	48-week,	Sanofi-	USA	IGlar	189	71	NR	NR	NR	NR
<i>al.</i> , 2006; ⁸⁷ Oster <i>et al.</i>	open- label.	Aventis		Pioglitazone	199	87	NR	NR	NR	NR
2006 ⁸⁶	parallel									
Pan <i>et al.</i> ,	24-week,	Sanofi-	10 Asian	IGlar+glimepiride	220	NR	55.6±8.4*	40	NR	10.3±6.3*
2007 ⁷⁶	open- label,	Aventis	countries	NPH+glimepiride	223	NR	56.6±8.7*	44	NR	10.0±5.4*
Philic-Teimikae	parallel	Νονο	6	IDet+0AD (morning	165	18	r8 2+10 4*	50	NP	10 5+7 6*
<i>et al.</i> , 2006 ⁷⁰	open-	Nordisk	European	IDet)	105	10	50.3±10.4	59		10.517.0
	label,		countries	IDet+OAD (evening	169	16	58.7±10.2*	54	NR	105.±7.0*
	parallel		anu USA	IDet)	16.4	17	F9 4141 0*		ND	10.016.0*
Backin at al	26 wook	ND	ND		104		50.4±11.0	5/		10.0±0.9
2006 ⁷²	open-	INK	INK	All IDot I Aco	305		55.0±10.3	54 NP		
2000	label,			ClarulAsp	² 5/					NP
	parallel			Glar+iAsp	120	INK	INK	INK	INK	INK
Raslova <i>et al.,</i> 2004 ⁷¹	22-week, open-	Novo Nordisk	8	IDet+IAsp	195	NR	58.3±9.4*	40	99.5% Caucasian	13.7±7.5*
	label, parallel			NPH+HSI	199	NR	58.2±9.2*	44	100% Caucasian	14.5±8.1*
Riddle <i>et al.</i> ,	24-week,	Aventis	USA and	IGlar+OAD	367	33	55±9.5*	55	84% Caucasian	8.4±5.55*
2003 ⁸²	open- label, parallel		Canada	NPH+OAD	389	32	56±8.9*	56	83% Caucasian	9.0±5.57*
Rosenstock <i>et</i>	28-week,	NR	USA	lGlar+HI	259	28	59.5±9.7*	58	80.6%	13.4±8.3*
<i>al.</i> , 2001 ^{/4}	open-			NDUSU			*	6-		*
	parallel			NPH+HI	259	21	59.2±9.9*	62	80.7% Caucasian	14.1±9.0
Rosenstock <i>et</i> <i>al.</i> , 2006 ⁸⁸	24-week, open-	Aventis	USA	IGlar (bedtime)+ Sfu (max)+Metf	104	6	55.9±10.5*	45	NR	8.5±5.8*

Study	Study Period and Type	Sponsor	Countries	Comparators	No. of Patients	Withdrawals	Age, Year	% Male	Race/Ethnicity	Duration of Diabetes, Year
				Rosi+Sfu (max)+Metf	112	11	55.3±11.4*	58	NR	8.5±5.1*
Rosenstock <i>et</i> <i>al.</i> , 2006 ⁷³	52-week, open- label.	NR	USA, UK, Denmark, and	IDet IGlar	582	NR	<u>></u> 18	NR	NR	NR
	parallel		Austria							
Tajima <i>et al.,</i> <i>2006</i>	36-week, open- label, parallel	Novo Nordisk Pharma Ltd.	Japan	IDet + NPH	363	NR	NR	NR	Japanese	NR
Triplitt <i>et al.,</i> 2006 ⁸⁹	16-week, open- label, parallel	Aventis Pharma	USA	lGlar	10	ο	54±6*	40	7/3/0 (Mexican American/Cauc asian/African American)	NR
				rosiglitazone	10	0	41±11*	40	8/1/1	NR
Vinik and Zhang, 2007 ⁹⁰	24-week, open- label, parallel	Sanofi- Aventis	USA	lGlar+Sfu+Metf	104	8 (7.6)	55.9±10.5*	45	70% Caucasian, 14% African American, 12% Hispanic	8.5±5.8*
				rosiglitazone+Sfu+ Metf	112	21 (18.8)	55.3±11.4*	58	77% Caucasian, 12% African American, 9% Hispanic	8.1±5.1*
Wang <i>et al.</i> ,	12-week,	NR	China	IGlar+glipizide	16	NR	57±6*	56	NR	10.4±4.3*
2007 ⁷⁹	open- label, parallel			NPH+glipizide	8	NR	56±8*	50	NR	9.5±4.9*
Yki-Järvinen <i>et</i>	52-week,	Hoechst	European	IGlar+OAD	214	NR	59±1 [†]	55	NR	10±1 [†]
<i>al.</i> , 2000 ⁸⁴	open- label, parallel	Marion Roussel	countries	NPH+OAD	208	NR	59±1 [†]	53	NR	$10\pm1^{\dagger}$
Yki-Järvinen <i>et</i> <i>al.</i> , 2006 ⁸⁰	36-week, open- label,	Aventis	Finland and the UK	IGlar+Metf	61	2 (due to pancreatic cancer)	56±1†	62	NR	9±1 [†]

Study	Study Period and Type	Sponsor	Countries	Comparators	No. of Patients	Withdrawals	Age, Year	% Male	Race/Ethnicity	Duration of Diabetes, Year
				NPH+Metf	49	1 (due to pulmonary tumour, but benign)	57±1 [†]	65	NR	9±1 [†]
HOE 901/2004 Study Group,	4-week, open-	Aventis	Europe and South	IGlar [30]+OAD	64	2	58.9 [29 to 75] [‡]	58	NR	9.5
2003 ⁸³	label, parallel		Africa	IGlar [80]+OAD	72	0	60.0 [38 to 78] [‡]	64	NR	9.9
				NPH+OAD	68	0	59.2 [30 to 78]‡	57	NR	9.1

*mean±SD; [†]mean±SE; [‡]mean[range]; **median [interquartile range]. DM=diabetes mellitus; HI=human insulin; HSI= human soluble insulin; Glim=glimepiride; IAsp=insulin aspart; IDet=insulin detemir; IGlar=insulin glargine; Metf=metformin; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; OGLD=oral glucose-lowering drugs; RCTs=randomized controlled trials; NR=not reported; Sfu=sulfonylurea.

APPENDIX 8: PATIENT INCLUSION AND EXCLUSION CRITERIA OF SELECTED RCTS

Study	Inclusion Criteria	Exclusion Criteria	DM Type
Ashwell <i>et al.</i> , 2006 ⁶⁴	Patients with type 1 DM; age 18 to 65 years; no previous experience of using IGIar; history of using multiple daily injection (MDI) regimen ≥1 year; a random C-peptide ≤0.1 nmol/L and HbA1c 7.0 to 9.5%; women of child-bearing potential were required to be using adequate contraception	Patients with proliferative retinopathy, recurrent severe hypoglycemia, impaired hepatic or renal function, or who worked at night shifts were excluded	1
Bolli <i>et al.</i> , 2006 ⁶³	Patients with type 1 DM	Not reported	1
Chase <i>et al.</i> , 2006 ³³	Patients with type 1 DM if screening A1c was >7.0% and <9.5%) on any insulin regimen (i.e., ≥2 injections/day or continuous subcutaneous insulin infusion); with type 1 DM	Not reported	1
Davies <i>et al.</i> , 2005 ⁵⁰	Patients with type 1; age 18 to 75 years; baseline HbA1c 6 to 11%; on insulin for at least 6 months	Not reported	1
De Leeuw <i>et al.,</i> 2005 ⁴⁰	Age≥18 years; type 1 DM <1 year; basal-bolus therapy≥2 months prior to study; BMI <35 kg/m²; A1c≤12.0%; total daily basal insulin requirement <100 IU/day; Caucasian	Proliferative retinopathy; impaired hepatic or renal function; severe cardiac problems; uncontrolled hypertension; recurrent major hypoglycemia; allergy to insulin; pregnancy or lactation	1
Eliaschewitz <i>et al.,</i> 2006 ⁷⁷	Patients with type 2 DM who failed to achieve good metabolic control on OADs (HbA1c level ≥7.5% and ≤10.5%; FBG levels ≥100mg/dl (≤5.5 mmol/L); age≤75 years; BMI≤35 km/m2; history of taking OADs (any sulfonylureas or a combination of sulfonylureas with other OAD such as metformin or acarbose) for at least for 6 months; and the previous doses of sulfonylureas had been at least equivalent to glimepiride 3 mg Patients had to be able and willing to receive a tight antidiabetic therapy and to perform blood-self-monitoring at home	Patients received any insulin treatment in the 3 months before the study; pregnant or breastfeeding; patients enrolled in a previous study of IGlar; receiving a investigative drug within 3 months of the study; history of alcohol abuse; likely to require treatment with drugs not permitted by the study protocol (including non- cardioselective β-blockers and systemic corticosteroids)	2
Fonseca <i>et al.</i> , 2004 ⁷⁵ [Subgroup analysis of Rosenstock ⁷⁴]	Age 40 to 80 years; insulin use ≥3 months prior to study	Hepatic or renal impairment; oral antidiabetic drugs ≤3 months prior to study; night shift work	2
Fritsche <i>et al.</i> , 2003 ⁷⁸	Age<75 years; BMI<35 kg/m²; previous oral therapy; fasting blood glucose ≥6.7 mmol/L; A1c 7.5 to 10.5%	Pregnancy or lactation; treatment with insulin or investigation drugs ≤3 months prior to study; clinically relevant somatic or mental diseases	2
Fulcher <i>et al.</i> , 2005 ⁶⁰	Age 18 to 80 years; insulin use ≥1 year prior to study; A1c ≥12.0%	Nightshift workers; known sensitivity to study drug or related drugs; impaired hepatic function or other clinically relevant physiological or psychological medical conditions;	1

Study	Inclusion Criteria	Exclusion Criteria	DM Type
		use of systemic corticosteroids and BG lowering drugs	
Garg <i>et al.</i> , 1998 ⁵³	Abstract – criteria not specified	Not reported	1
Haak <i>et al.</i> , 2005 ⁶⁸	Age≥35 years; type 2 DM ≥12 months; A1c≤12.0%; insulin use ≥2 months prior to study	OAD use ≤2 months prior to trial; pregnancy or lactation; proliferative retinopathy; uncontrolled hypertension; recurrent major hypoglycemia; impaired renal or hepatic function; cardiac problems; total daily basal insulin dose >100 IU/day	2
Hermansen <i>et al.,</i> 2004 ⁴⁹	Patients with type 1 DM; history ≥12 months; age≥18 years; BMI ≤35 kg/m²; HbA1c ≤12%; total daily insulin dose <1.4 u/kg; current treatment with any basal-bolus insulin regimen or biphasic insulin for ≥ months	Proliferative retinopathy requiring acute treatment, impaired renal or hepatic function, severe cardiac problems, uncontrolled hypertension; recurrent major hypoglycemia; allergy to insulin; history of drug or alcohol dependence; pregnancy and breast-feeding	1
Hermansen <i>et al.,</i> 2006 ⁶⁹	Patients with type 2 diabetes ≥12 months; age≥18 years; BMI ≤35 kg/m²; HbA1c of 7.5% to 10.0%; the definition of inadequate control required at least 4 months' treatment with one or two oral glucose-lowering drugs OGLDs at doses at least half the recommended maximum or highest tolerated; insulin-naïve patients	Patients using thiazolidinediones were excluded due to licensing restrictions; other exclusion criteria included secondary diabetes, maturity-onset diabetes of the young, proliferative retinopathy/maculopathy requiring treatment, hypoglycemia unawareness or recurrent major hypoglycemia, use of drugs likely to affect glycemia, impaired hepatic (alanine aminotransferase more than twice the upper local reference limit) or renal function (serum creatinine ≥150 µmol/L [1.7 mg/dl]), significant cardiovascular disease, pregnancy, and breastfeeding	2
Hermansen <i>et al.</i> , 2001 ⁴³	Age 15 to 55 years; Caucasian; type 1 DM >2 years; use of basal-bolus treatment with NPH and HI ≥6 months prior to study; BMI ≤27.5 kg/m²; A1c ≤8.7%; glucagon-stimulated C- peptide ≤0.1 nmol/L or fasting C-peptide ≤0.04 nmol/L; NPH dosage <40 IU/day	Proliferative retinopathy; impaired hepatic or renal function; decompensated heart failure; unstable angina pectoris; myocardial infarction within last year; hypertension (≥180/100 mmHg); hypoglycemic unawareness; recurrent major hypoglycemia; allergy to insulin or any compositional component; abuse of alcohol or narcotics; use of systemic corticosteroids, β-blockers, or hormones within last month; pregnancy or lactation or using inadequate contraceptive measures; treatment with other investigational products ≤3 months prior to study; previous use of insulin detemir	1
Hershon <i>et al.</i> , 2004 ⁵⁴	Age 18 to 80 years; A1c≤12.0%; postprandial C-peptide ≤0.5 mmol/L	Hepatic or renal impairment; oral antidiabetic drugs ≤3 months prior to study; pregnancy; night shift work	1
Home <i>et al.</i> , 2005 ⁵⁵	Adult; C-peptide<0.50 nmol/L or <1.50 μ g/L when capillary BG \geq 5.5 mmol/L (100 mg/dL); insulin use \geq 1 year prior to study	Not reported	1
Home <i>et al.</i> , 2004 ⁴¹	Age>18 years; type 1 DM >1 year prior to study; use of basal-	Proliferative retinopathy; recurrent major hypoglycemia;	1

Study	Inclusion Criteria	Exclusion Criteria	DM Type
	bolus regimen >2 months prior to study with basal insulin dose <100 units/day; A1c≤12.0%; BMI ≤35 kg/m²	impaired hepatic or renal function; uncontrolled cardiovascular problems; use of medication known to interfere with glucose metabolism; pregnancy or lactation; other significant medical problems	
Kawamura <i>et al.</i> , 2005 ³¹	Age 8 to 21 years; basal-bolus insulin treatment with NPH	Not reported	1
Kolendorf <i>et al.</i> , 2004 ³⁹	Basal-bolus treatment \geq 4 months prior to study	Not reported	1
Kudva <i>et al.</i> , 2005 ⁶⁵	Age ≥18 years; A1c≤7.8%; fasting C-peptide<200 pmol/L; MDI with glargine or ultralente as basal insulin + rapid-acting insulin	Not reported	1
Massi Benedetti <i>et al.,</i> 2003 ⁸¹	Diagnosis ≥3 years prior to study; oral antidiabetic drugs alone or combined with 1x daily insulin ≥3 months prior to study	Not reported	2
Meneghini <i>et al.</i> , 2005 ⁸⁵	A1c 8% to 12%; sulfonylurea dosage ≥1/2 maximal dose or metformin 1 to 2.5 g/day for ≥3 months prior to study	Not reported	2
Meneghini <i>et al.</i> , 2006 ⁸⁷ Oster <i>et al.</i> , 2006 ⁸⁶	Patients with type 2 DM; inadequately controlled on sulfonylurea or metformin; HbA1c 8% to 12%	Not reported	2
Mianowska <i>et al.</i> , 2006 ³⁵	Not reported	Not reported	1
Murphy <i>et al.</i> , 2003 ³⁶	Patients with type 1 DM; age between 12 and 20 years; currently in puberty (Tanner stage B2/G2 or higher); duration of diabetes longer than 1 year or C-peptide negative, and already using a basal-bolus insulin regimen	Renal or hepatic impairment; evidence of diabetic complications; unstable metabolic control (defined as HbA1c>12%)	1
Pan <i>et al.</i> , 2007 ⁷⁶	Insulin-naïve Asian patients aged ≥40 and ≤80 years with type 2 DM (classified by WHO criteria); random venous plasma glucose concentration ≥11.1 mmol/L or FPG ≥7.0 mmol/L or 2h plasma glucose concentration ≥11.1 mmol/L 2-h after 75g anhydrous glucose in an oral glucose tolerance test; (part of WHO criteria) poorly controlled on OAD for ≥3 months prior to study entry; BMI 20 to 35 kg/m², HbA1c≥7.5 and ≤10.5%, FBG >120mg/dl (>6.7 mmol/L)	Pregnancy; history of ketoacidosis and likely to require drugs prohibited by the study protocol (non-selective β- blockers, systemic corticosteroids)	2
Pesic <i>et al.</i> , 2006 ⁵¹	Patients with type 1 DM on long term intensive insulin therapy	Not reported	1
Philis-Tsimikas <i>et al.,</i> 2006 ⁷⁰	Insulin-naive patients with type 2 DM at least for 12 months; age \geq 18 years; BMI \leq 40 kg/m ² ; HbA1c 7.5% to 11%; following at least 3 months treatment with \geq 1 OAD	Proliferative retinopathy/maculopathy requiring treatment; hypoglycemia unawareness or recurrent major hypoglycemia; use or anticipated use of ≥1 drug likely to affect BG regulation (e.g., systemic steroids, non-selective β-blockers); OAD treatment that did not adhere to the approved labelling in the respective country; any disease or	1

Study	Inclusion Criteria	Exclusion Criteria	DM Туре
		conditions that, based on the opinion of the investigator,	
		would make the patient unsuitable for participation (e.g.,	
		renal, cardiac or hepatic disease; uncontrolled	
		hypertension; and/or any psychological incapacity or	
		language barrier precluding adequate understanding or co-	
		operation)	
Pieber <i>et al.</i> , 2000 ⁵²	Insulin therapy >1 year prior to study	Not reported	1
Pieber <i>et al.</i> , 2005 ⁴²	Age≥18 years; BMl≤35 kg/m²; A1c≤12.0%; type 1 DM≥1 year;	Significant medical disorders; pregnancy or lactation;	1
	basal-bolus insulin treatment \geq 2 months prior to study; total	history of recurrent major hypoglycemia; known	1
	daily basal insulin requirement ≤100 IU/day	hypoglycemic unawareness; use of concomitant	1
		medications likely to interfere with glucose metabolism	
Pieber <i>et al.</i> , 2007 ⁴⁸	Patients with type 1 DM for \geq 1 year; age \geq 18 years; BMI \geq 35	Patients with significant medical problems, including	1
	kg/m²; HbA1c 7.5 to 12.0%; prior to the trial, patients were	proliferative retinopathy or maculopathy requiring acute	1
	treated with either intermediate-/long-acting insulin	treatment, recurrent severe hypoglycemia, hypoglycemia	1
	injections, b.i.d., and 3 to 4 pre-meal human soluble insulin	unawareness, impaired hepatic or renal function or	1
	injections for 6 months; or biphasic insulin morning and	uncontrolled cardiovascular problems; pregnant or	
	evening and pre-lunch human soluble insulin injection for ≥ 6	breastfeeding women	1
	months		
Porcellati <i>et al.</i> , 2004 ⁶¹	Fasting C-peptide \leq 0.15 nmol/L; MDI with lispro+NPH \geq 2 years	Microangiopathic complications; autonomic neuropathy	1
Raskin <i>et al.</i> , 2006 ⁷²	Patients with type 2 DM	Not reported	2
Raskin <i>et al.,</i> 2000 ⁵⁹	Age 18 to 80 years; use of NPH+insulin lispro \geq 3 months prior	Hepatic or renal impairment; pregnancy or lactation; use of	1
	to study; C-peptide≤0.5 mmol/L; FBG≥5.5 mmol/L; A1c≤12.0%	any glucose-lowering drug other than insulin \leq 4 weeks	1
		prior to study	
Raslova <i>et al.</i> , 2004 ⁷¹	Age≥18 years old; BMI≤40 kg/m2 and HbA1c<12.0%; patients	Individuals with significant disorders, hypoglycemic	
	with a history of type 2 DM \geq 1 year; been treated on a	unawareness or recurrent major hypoglycemia; pregnant	1
	regimen with basal insulin [biphasic insulin, insulin+oral	or breastfeeding women; with allergy to insulin	1
	hypoglycemic drugs (OHD), or basal+mealtime insulin] once		
	or twice daily for at least 3 months, with a total daily insulin		1
	requirement of <1.4 IU/kg		
Ratner <i>et al.</i> , 2000 ⁵⁶	Age 18 to 80 years; postprandial C-peptide \leq 0.5 nmol/L for \geq 1	Use of antidiabetic drugs other than insulin \leq 1 month prior	1
	year prior to study; A1c≤12.0%	to study; pregnancy; impaired hepatic or renal function;	1
		nightshift work	
Riddle <i>et al.</i> , 2003 ⁸²	Age 30 to 70 years; diabetes \geq 2 years prior to study; use of	Prior use of insulin except for gestational diabetes or <1	2
	oral antidiabetic drugs \geq 3 months prior to study; BMI 26 to 40	week; current use of alpha-glucosidase inhibitor or rapid-	
	kg/m²; A1c 7.5% to 10.0%; FBG≥7.8 mmol/L	acting insulin secretagogue; use of other agents affecting	
		glycemic control; history of ketoacidosis or inability to	1
		recognize hypoglycemia; increased liver enzymes or serum	
		creatinine; history of drug or alcohol abuse; positive anti-	

Study	Inclusion Criteria	Exclusion Criteria	DM Type
		GAD antibody; fasting C-peptide ≤0.25 pmol/mL	
Robertson <i>et al.</i> , 2007 ³⁰	Children and adolescents with type 1 DM; between 6 and 17	Not reported	1
	years, treated with insulin for at least 12 months (total daily		
	dose ≤2.0 U/kg), and with HbA1c≤12.0%		
Rosenstock <i>et al.</i> , 200057	Age 18 to 70 years; BMI 18 to 28 kg/m²; A1c≤10.0%;	Not reported	1
	postprandial C-peptide <0.2 pmol/mL; basal-bolus daily		
	insulin ≥2 months prior to study		
Rosenstock <i>et al.</i> , 2001 ⁷⁴	Age 40 to 80 years; insulin treatment \geq 3 months prior to	Hepatic or renal impairment; oral antidiabetic drugs \leq 3	2
	study; A1c 7.0 to 12.0%; BMI<40 kg/m²	months prior to study	
Rosenstock <i>et al.,</i> 2006 ⁸⁸	Age>18 years; A1c≥7.5%; BMI>25 kg/m²; continuous oral use of	Stroke; myocardial infarction; angina pectoris; coronary	2
	\geq 50% of the maximally labelled dose of a sulfonylurea and	artery bypass graft; percutaneous transluminal coronary	
	\geq 1,000 mg metformin \geq 3 months prior to study	angioplasty within previous 12 months; history of	
		congestive heart failure; use of nonselective β -blockers;	
		hypoglycemia unawareness; impaired renal or hepatic	
		function; substance or alcohol abuse; malignancy and	
		planned radiological examinations requiring	
		administration of contrasting agents	
Rosenstock <i>et al.</i> , 2006 ⁷³	Patients with type 2 DM; insulin-naïve men and women; age	Not reported	2
	≥18 years; HbA1c 7.5% to 10.0%; BMI ≤40.0 kg/m²;		
	inadequately controlled on one or two OADs		
Rossetti <i>et al.</i> , 2003 ⁶²	Fasting C-peptide ≤0.15 nmol/L; MDI	Not reported	1
Russell-Jones <i>et al.</i> ,	Age \geq 18 years; type 1 DM \geq 1 year; use of basal-bolus insulin \geq 2	A1c>12.0%; total basal insulin dose >100 IU/d; pregnancy or	1
2004 ⁴⁵	months prior to study	lactation; proliferative retinopathy; impaired hepatic or	
		renal function; recurrent major hypoglycemia;	
		uncontrolled hypertension; severe cardiac problem; other	
		significant medical problems; concomitant use of	
		medications known to interfere with glucose metabolism	
Schober <i>et al.</i> , 2002 ³²	Age 5 to 16 years; insulin use \geq 1 year prior to study with \geq 3	Treatment with blood glucose-lowering drugs other than	1
	daily injections of insulin; A1c≤12.0%	insulin \leq 1 month prior to study; post-menarcheal, sexually	
		active girls not using adequate contraception; treatment	
		with hyperglycemic drugs; treatment with investigational	
		drugs <2 months prior to study; impaired hepatic or renal	
		function	
Standl <i>et al.</i> , 2004 ⁴⁶	Age 18 to 74 years; type 1 DM \geq 12 months; twice daily basal	Proliferative retinopathy; impaired hepatic or renal	1
	insulin and meal-related bolus insulin ≥ 2 months prior to	function; severe cardiac disease; uncontrolled	
	study; BMI<35.0 kg/m²; A1c≤12.0%; total basal insulin dosage	hypertension; recurrent major hypoglycemia; insulin	
-	l ≤100 IU/day	allergy; pregnancy, or lactation	
Tajima <i>et al.,</i> 2006	Insulin naïve adults with type 2 DM \ge 1 year, BMI < 30 kg/m ² ,	Not reported	2

Study	Inclusion Criteria	Exclusion Criteria	DM Type
	A1C \geq 7.5% and < 10%, taking at least one OAD		
Triplitt <i>et al.</i> , 2006 ⁸⁹	Patients with type 2 DM; poorly controlled on metformin plus sulfonylurea; age 30 to 70 years; stable body weight (±3 lbs) for at least 3 months before the study; HbA1c≥9.0%. Type 2 DM patients who were taking stable, maximally effective doses of a sulfonylurea (≥20 mg/day of glyburide or glipizide) and metformin (≥2,000 mg/day); in good general health, without evidence of cardiac, hepatic, renal, or other chronic diseases; no subjects participated in any heavy exercise; no subject was taking any medication known to affect glucose metabolism	History of using insulin or a thiazolidinedione	2
Vague <i>et al.</i> , 2003 ⁴⁴	Type 1 DM ≥1 year; use of basal-bolus insulin ≥2 months prior to study; A1c≤12.0%; BMI≤35.0 kg/m²; total basal insulin dosage ≤100 IU/day	Proliferative retinopathy; impaired hepatic or renal function; severe cardiac problems; uncontrolled hypertension; recurrent major hypoglycemia; allergy to insulin; pregnancy or lactation	1
Vinik and Zhang, 2007 ⁹⁰	Patients with type 2 DM; uncontrolled with sulfonylurea plus metformin; HbA1c≥7.5 and ≥11%; BMI>25 kg/m²; 18 to 80 years old; insulin-naïve patients; continuous oral hypoglycemic treatment using stable daily dose of ≥50% of the maximally labelled dose of a sulfonylurea and at least 1,000 mg metformin for ≥3 months before the screening	The data was extracted from its companion publication (RM3497). The subject was excluded in any of the following criteria were present: patient had stroke, myocardial infarction, angina pectoris, coronary artery bypass graft, or percutaneous transluminal coronary angioplasty within previous 12 months; history of congestive heart failure; treatment with non- selective β-blockers; hypoglycemia unawareness; impaired renal function; active liver disease; substance or alcohol abuse; malignancy and planned radiological examinations requiring administration of contrasting agents.	2
Wang <i>et al.</i> , 2007 ⁷⁹	Patients with history of type 2 DM for 6 months; age 30 to 70 years; BG was not well controlled (FBG≥7.0 mmol/L and <13.0 mmol/L) with enough dose of sulphanylureas equal to 7.5 mg/day glibenclamide or combination treatment with other OAD for >3 months; no obvious renal, liver, or heart diseases All patients were treated with extended-release glipizide (Glucotrol XL) 5 mg/day before breakfast for 2 weeks in washout period and CGMS were examined for 3 days during the 2nd week	Obvious renal, liver, heart diseases	2
White <i>et al.</i> , 2006 ³⁴	Adolescents with type 1 DM	Not reported	1
Witthaus <i>et al.</i> , 2001 ⁵⁸	Insulin use ≥1 year prior to study	Not reported	1

Study	Inclusion Criteria	Exclusion Criteria	DM Туре
Yki-Järvinen <i>et al.</i> ,	Age 40 to 80 years; BMI<40 kg/m²; A1c 7.5% to 12.0%;	Women not using contraceptives; pregnancy; use of	2
2000 ⁸⁴	diabetes diagnosed \geq 3 years prior to study; oral antidiabetic	regular insulin ≤4 weeks prior to study; diabetic	
	therapy with sulfonylurea alone or + acarbose or metformin	retinopathy with surgery \leq 3 months prior to study or	
	or with metformin alone \geq 1 year prior to study; negative	requiring treatment for this within 3 months of entering	
	history of ketoacidosis	study; night shift work; cardiovascular, hepatic (ALT or AST	
		>2x upper limit), neurologic, endocrine, or other major	
		systemic diseases; history of drug or alcohol abuse;	
		impaired renal function (serum creatinine >133 µmol/L)	
Yki-Järvinen <i>et al.</i> ,	Age 35 to 75 years; use of a stable dose of sulfonylurea and	Use of other oral antihyperglycemic agents; prior use of	2
2006 ⁸⁰	metformin or metformin alone \geq 3 months prior to study; BMI	insulin; positive GAD antibodies; history of ketoacidosis;	
	20 to 40 kg/m²; A1c≥8.0%; mean FPG≥7 mmol/L; fasting C-	non-compliance with regard to daily measurement of FPG;	
	peptide ≥0.33 nmol/L	abnormal safety laboratory tests including liver enzymes,	
		serum aspartate aminotransferase, serum alkaline	
		phosphatase, >3 times the upper limit of normal; serum	
		creatinine \geq 120 µmol/L; history of alcohol or drug abuse;	
		night shift work; pregnancy; use of investigational drug ≤ 2	
		months prior to study; use of drugs likely to interfere with	
		glucose control; clinically relevant major systemic disease	
		other than diabetes that would make implementation of	
		study protocol or interpretation of result difficult; mental	
		health condition rendering the subject unable to	
		understand the nature, scope, and possible consequences	
		of the study; diabetic retinopathy requiring surgical	
		treatment during study or <3 months prior to study	
HOE 901/2004 Study	Age 40 to 80 years; oral treatment ≥3 months; A1c≥7.0%	Prior insulin treatment	2
Investigators, 2003 ⁸³			

Arc=glycosylated hemoglobin; ALT=alanine aminotransferase; anti-GAD=anti-glutamic acid decarboxylase antibodies; AST=aspartate aminotransferase; BG=blood glucose; b.i.d.=twice a day; BMI=body mass index; CGMS=continuous glucose monitoring system; DM=diabetes mellitus; FBG=fasting blood glucose; HbArc=glycosylated hemoglobin; HI=human insulin; IGIar=insulin glargine; MDI=multiple daily regimen; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; OHD=oral hypoglycemic drugs; RCTs=randomized controlled trials; WHO=World Health Organization.

APPENDIX 9: RESULTS OF QUALITY ASSESSMENT OF INCLUDED RCTS

Study	Score	e on Jadad Scal	e for	Total Score	Allocation	Blinding	Analyses:	Number	Dropouts
	Randomization	Double Blinding	Withdrawals and Dropouts	on Jadad Scale	Concealment	of Outcome Assessor	Intent-to- Treat	of Patients	N (%)
Type 1 DM									
Ashwell <i>et al.</i> , 2006 ⁶⁴	2	0	1	3	Adequate	No	No	54	3 (5.6)
De Leeuw <i>et al.</i> , 2005 ⁴⁰	1	о	1	2	Unclear	NR	Yes	315	8 (2.53)
Fulcher <i>et al.</i> , 2005 ⁶⁰	1	0	1	2	Unclear	Partially	Yes	125	18 (14.4)
Hermansen <i>et al.</i> , 2001 ⁴³	1	0	1	2	Unclear	Partially	No	59	3 (5.1)
Hermansen <i>et al.,</i> 2004 ⁴⁹	1	0	1	2	Unclear	No	Yes	595	23 (3.87)
Hershon <i>et al.</i> , 2004 ⁵⁴	1	0	1	2	Unclear	NR	Yes	394	40 (10.2)
Home <i>et al.</i> , 2005 ⁵⁵	2	0	1	3	Unclear	NR	Yes	585	37 (6.32)
Home <i>et al.</i> , 2004 ⁴¹	2	0	1	3	Unclear	NR	Yes	408	17(4.2)
Kolendorf <i>et al.</i> , 2006 ³⁹	1	0	1	2	Unclear	No	No	131	7 (5.34)
Kudva <i>et al.</i> , 2005 ⁶⁵	2	0	1	3	Adequate	Partially	No	24	2 (8.33)
Murphy <i>et al.</i> , 2003 ³⁶	1	0	1	2	Unclear	No	No	26	1 (3.85)
Pieber <i>et al.</i> , 2000 ⁵²	1	0	1	2	Unclear	NR	NR	333	o (o)
Pieber <i>et al.</i> , 2005 ⁴²	2	0	1	3	Unclear	NR	Yes	400	21 (5.25)
Pieber <i>et al.</i> , 2007 ⁴⁸	1	0	1	2	Adequate	No	No	320	29(9.0)
Porcellati <i>et al.</i> , 2004 ⁶¹	2	0	0	2	Adequate	NR	Yes	121	o (o)
Raskin <i>et al.</i> , 2000 ⁵⁹	2	0	1	3	Unclear	NR	NR	619	31 (5)
Ratner <i>et al.</i> , 2000 ⁵⁶	1	0	1	2	Unclear	NR	Yes	534	53 (9.93)
Robertson <i>et al.</i> , 2007 ³⁰	1	0	1	2	Adequate	No	Yes	347	12 (3.46)
Rosenstock <i>et al.</i> , 2000 ⁵⁷	1	0	1	2	Unclear	NR	Yes	256	2 (0.78)
Rossetti <i>et al.</i> , 2003 ⁶²	1	0	0	1	Unclear	NR	NR	51	NR
Russell-Jones <i>et al.,</i> 2004 ⁴⁵	2	ο	1	3	Unclear	NR	Yes	749	49 (6.54)
Schober <i>et al.</i> , 2002 ³²	1	0	0	1	Unclear	NR	Yes	361	12 (3.32)
Standl <i>et al.</i> , 2004 ⁴⁶	1	0	1	2	Unclear	NR	Yes	289	37 (12.8)
Vague <i>et al.</i> , 2003 ⁴⁴	2	0	1	3	Unclear	NR	Yes	447	22 (4.92)
Witthaus <i>et al.</i> , 2001 ⁵⁸	2	0	0	2	Unclear	NR	Yes	517	NR

Study	Scor	e on Jadad Sca	le for	Total Score	Allocation	Blinding	Analyses:	Number	Dropouts
	Randomization	Double Blinding	Withdrawals and Dropouts	on Jadad Scale	Concealment	of Outcome Assessor	Intent-to- Treat	of Patients	N (%)
Type 2 DM	·								
Eliaschewitz <i>et al.</i> , 2006 ⁷⁷	1	0	1	2	Unclear	No	Yes	481	19 (3.95)
Fonseca <i>et al.</i> , 2004 ⁷⁵	1	0	1	2	Unclear	NR	NR	100	7 (7)
Fritsche <i>et al.</i> , 2003 ⁷⁸	2	0	1	3	Unclear	NR	Yes	695	55 (7.91)
Haak <i>et al.</i> , 2005 ⁶⁸	1	0	1	2	Unclear	NR	Yes	505	34 (6.73)
Hermansen <i>et al.</i> , 2006 ⁶⁹	1	0	1	2	Adequate	No	Yes	475	24 (5.05)
Massi Benedetti <i>et al.,</i> 2003 ⁸¹	2	0	1	3	Unclear	NR	Yes	570	46 (8.07)
Pan <i>et al.</i> , 2007 ⁷⁶	1	0	1	2	Unclear	No	No	444	49 (11.06)
Philis-Tsimikas <i>et al.,</i> 2006 ⁷⁰	1	0	1	2	Adequate	No	Yes	498	51 (10.24)
Raslova <i>et al.</i> , 2004 ⁷¹	1	0	1	2	Unclear	No	Yes	394	16 (4.06%)
Riddle <i>et al.</i> , 2003 ⁸²	2	0	1	3	Unclear	NR	Yes	756	65 (8.6%)
Rosenstock <i>et al.</i> , 2001 ⁷⁴	1	0	1	2	Unclear	NR	Yes	518	49 (9.46%)
Rosenstock <i>et al.</i> , 2006 ⁸⁸	1	0	1	2	Unclear	NR	Yes	216	17 (7.87%)
Triplitt <i>et al.</i> , 2006 ⁸⁹	1	0	0	1	Unclear	No	Yes	20	NR
Vinik and Zhang, 2007 ⁹⁰	1	0	0	1	Unclear	No	No	216	29 (13.43)
Wang <i>et al.</i> , 2007 ⁷⁹	1	0	0	1	Unclear	No	Yes	24	NR
Yki-Järvinen <i>et al.</i> , 2000 ⁸⁴	1	0	0	1	Unclear	NR	Yes	426	NR
Yki-Järvinen <i>et al.</i> , 2006 ⁸⁰	2	0	1	3	Unclear	NR	Yes	110	3 (2.73)
Yokoyama <i>et al.</i> , 2006 ¹⁴⁰	1	0	0	1	Unclear	No	NR	62	NR
HOE 901/2004 Study Investigators Group, 2003 ⁸³	2	0	1	3	Unclear	NR	Yes	204	2 (0.98)

NR=not reported; RCTs=randomized controlled trials.

APPENDIX 10A: STUDY-LEVEL HYPOGLYCEMIA DATA FOR RCTS OF TYPE 1 DM

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (Endpoint vs. Baseline)	p-value Between Treatments	Definition of Hypoglycemia				
Ashwell <i>et</i>	IGlar+ILis	Severe	NR	14	Pts	NR	NR	Nocturnal:	Overall: anytime				
<i>al.</i> , 2006 ⁶⁴		Nocturnal		38 (72%)	Pts (%)			p=0.058 for	symptomatic				
				140	Episodes							# of pts and	(appropriate symptoms
				0.66±0.02 [†]	Episodes/ month				episodes/	monitored blood			
		Symptomatic		1,277	Episodes			others	glucose concentration				
		Non-nocturnal		1,137				others	treated)				
	NPH+HI	Severe	NR	16	Pts	NR	NR		Severe: requiring third-				
		Nocturnal		43 (83%);	Pts (%)					party assistance	party assistance		
				268	Episodes							Nocturnal: from	Nocturnal: from
				1.18±0.02 [†]	Episodes/						bedtime until pre-		
					month				breakfast BG				
		Symptomatic		1,327	Episodes				measurement				
		Non-nocturnal		1,059									
Bolli <i>et al.</i> , 2006 ⁶³ [Abstract]	IGlar+ILis	Severe	NR	0.15	Events/pt- week (over the last month of treatment)	NR	NR	NS	Severe: confirmed serious hypoglycemia events: blood glucose <2.3 mmol/L				
	NPH+ILis	Severe	NR	0.17	Events/pt- week	NR	NR						
Chase <i>et al.</i> ,	lGlar+lLis	Severe	NR	9	pts	NR	NR	NR	Other: confirmed				
2006 ³³ [Abstract]		Confirmed clinically		28					clinical relevant hypoglycemia <36				
		relevant							mg/dl (2 mmol/L)				
	NPH (or	Severe	NR	4	pts	NR	NR	-					
	lente)+ILis	Confirmed		30									
		cinically relevant		-									
Davies <i>et al.</i> ,	IGlar+IAsp	Overall	NR	80.7	%	NR	NR	risk ratio 1.21	NR				

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (Endpoint vs. Baseline)	p-value Between Treatments	Definition of Hypoglycemia
		Major		1	Events				
		Minor		NR					
	NPH+IAsp	Overall	NR	77.2	%	NR	NR		
		Major		1	Events				
		Minor		NR					
De Leeuw <i>et</i>	IDet+IAsp	Overall	NR	207 (96)	Pts (%)	NR	NR	p=0.016 for	Overall (Minor): BG <2.8
<i>al.</i> , 2005 ⁴⁰		Minor		NSD				nocturnal	mmol/L; symptoms
		Major		30 (14)					only, if not confirmed
		Nocturnal		180 (1378)					Severe (Major): enisode
					Pts (episodes)				Severe (Major): episode with severe central nervous system symptoms, requiring
	NPH+IAsp	Overall	NR	95 (96)	Pts (%)	NR			
		Minor		NSD					
		Major		21 (21)					assistance and either
		Nocturnal		87 (926)	Pts (episodes)				BG<2.8 mmol/L or
									symptom reversal
									achieved with food,
 Fulcher <i>et</i>	IGlar+ILis	Overall	NR	62 (100)	 Pts (%)	NR	NR	NS for overall	Symptomatic
<i>al.</i> 2005 ⁶⁰		Nocturnal		50 (81)	1 (3 (70)			p=0.02 for mild	symptoms consistent
		Mild	-	10.78	Episodes/100			nocturnal	with hypoglycemia that
		Moderate	-	6.82	pt-days			(IGlar>NPH),	was mild (2.8-3.6
		Severe	-	0.87				p=0.004 for	mmol/L), moderate
		Nocturnal	-	4.49				moderate	(<2.8 mmol/L), or severe
		Nocturnal:	-	2.36				nocturnal,	Severe: requiring
		Mild						p=0.02101	mmol/L or prompt
		Nocturnal:		1.71				nocturnal	recovery following oral
		Moderate							carbohydrate, i.v.
		Nocturnal:		0.22					glucose, or s.c. glucagon
		Severe				L			Nocturnal: between
	NPH+ILis	Overall	NR	59 (93.7)	Pts (%)	NR	NR		evening insulin
		Nocturnal		54 (86)					injection and morning
		Mild		10.34	Episodes/100				insuin dose

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from	p-value (Endpoint	p-value Between	Definition of Hypoglycemia
						Baseline	vs. Baseline)	Ireatments	
		Moderate		7.31					
		Severe		0.99					
		Nocturnal		4.73					
		Nocturnal:		1.96					
		Nocturnal: Moderate		2.21					
		Nocturnal: Severe		0.37					
Garg <i>et al.</i> ,	IGlar+HI	NR	NR	NR	NR	NR	NR	NR	NR
1998 ⁵³ [Abstract]	NPH+HI	NR	NR	NR	NR	NR	NR		
Hermansen	IDet+IAsp	Overall	NR	219 (75)	Pts (%)	NR	NR	Overall: RR	Nocturnal: occurs
<i>et al.</i> , 2004 ⁴⁹				2,497	Episodes			(95%Cl) 0.79	between 23:00 and
				37.1	Episodes/			(0.63, 0.98) and	06:00 Major requiring
				(-)	pt-yr			p=0.030 All Nocturnal	major: requiring
		Nocturnal: All		113 (38.7)	Pts (%)			0.45 (0.35, 0.58)	Minor: plasma
				271	Episodes			and p<0.001	glucose<3.1 mmol/L
				4	Episodes/			Major	Symptoms only: no
		Nocturnal		2 (1 0)	pt-yr			Nocturnal: RR	plasma glucose
		Maior		3 (1.0)	Fis (%)			0.17 (0.04, 0.63)	measurement or
		Minor		4	Dtc (%)			and p=0.008	plasma glucose≥3.1
		WIND		98 (33.0)	Enisodes			Nocturnal: RR	mmol/L
		Symptoms only		41 (14 0)	Pts (%)	-		0.46 (0.35,0.61)	
		- symptoms only		71	Enisodes	-		and p<0.001	
		Maior		19(6.5)	Pts (%)			Symptom only	
				40	Episodes	1		Nocturnal: RR	
		Minor		202 (69.2)	Pts (%)	1		0.46 (0.30,0.71)	
				1,780	Episodes	1		Major: RR 0.80	
		Symptom only		121 (41.4)	Pts (%)	1		(0.35 to 2.22)	
				677	Episodes	1		and p=0.796	

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (Endpoint vs. Baseline)	p-value Between Treatments	Definition of Hypoglycemia
	NPH+HI	Overall	NR	238 (82.9)	Pts (%)	NR	NR		
				3192	Episodes				
				48.2	Episodes/pt-				
					yr	_			
		Nocturnal: All		173 (60.3)	Pts (%)				
				608	Episodes	_			
				9.2	episodes/pt-				
					yr	-			
		Major		12 (4.2)	Pts (%)	-			
				24	Episodes	-			
		Minor		142 (49.5)	Pts (%)				
				427	Episodes				
		Symptoms only		72 (25.1)	Pts (%)				
				157	Episodes				
		Major		18(6.3)	Pts (%)				
				45	Episodes				
		Minor		222 (77.4)	Pts (%)				
				2282	Episodes				
		Symptom only		148 (51.6)	Pts (%)				
				865	Episodes				
Hermansen	IDet+HI	Overall	NR	54 (94.7)	Pts (%)	NR	NR	NS for all	Overall (Minor): BG<3.0
<i>et al.</i> , 2001 ⁴³		Minor		53 (93)					mmol/L, dealt with by
		Major		4 (7)					patient
	NPH+HI	Overall	NR	51 (91.1)	Pts (%)	NR	NR		Severe (Major):
		Minor		51 (91.1)					help or iv glucose or
		Major		7 (12.5)					glucagon. Nocturnal: NR
Hershon <i>et</i>	IGlar+HI	BG<2.8 mmol/L	NR	143 (73.3)	Pts (%)	NR	NR	p=0.021 for	Overall: symptoms of
<i>al.</i> , 2004 ⁵⁴		BG<2.0 mmol/L		71 (36.6)				BG<2.8, p=0.033	hypoglycemia

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (Endpoint vs. Baseline)	p-value Between Treatments	Definition of Hypoglycemia
		Severe		5 (2.6)					
	NPH+HI	BG<2.8 mmol/L BG<2.0 mmol/L Severe Nocturnal	NR	163 (81.7) 92 (46.2) 10 (5.1) 138 (69.5)	Pts (%)	NR	NR		
Home <i>et al.,</i> 2005 ⁵⁵	IGlar+HI	Symptom Severe Nocturnal	NR	260 (89.0) 31 (10.6) 178 (61.0)	Pts (%)	NR	NR	NS for all	Symptomatic: symptoms of hypoglycemia
Home at 1	NPH+HI	Symptom Severe Nocturnal	NR	248 (84.6) 44 (15.0) 179 (61.1)	Pts (%)	NR	NR	Det +lAsnys	confirmed by BG<2.8 mmol/L (50 mg/dL) Asymptomatic: BG<2.8 mmol/L (50 mg/dL) without symptoms Severe: requiring assistance, with either BG<2.8 mmol/L (50 mg/dL) or prompt recovery after administration of oral carbohydrate, i.v. glucose, or glucagon Nocturnal: during sleep, between bedtime and rising in the morning or before the morning pre- breakfast self-BG measurement and morning insulin injection
Home <i>et al.</i> ,	IDet _{12h} +IAsp	Minor	NR	114 (84)	Pts (%)	NR	NR	IDet _{12h} +IAsp vs.	Minor: BG<2.8 mmol/L

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (Endpoint vs. Baseline)	p-value Between Treatments	Definition of Hypoglycemia
		Major		6 (4)					
		Nocturnal		59 (44)					
	IDet _{m+b} +IAsp	Minor	NR	114 (83)	Pts (%)	NR	NR		
		Major		11 (8)					
		Nocturnal		47 (34)					
	NPH _{m+b} +lAsp	Minor	NR	107 (84)	Pts (%)	NR	NR		
		Major		10 (8)					
		Nocturnal		64 (50)					
Kawamura <i>et al.</i> , 2005 ³¹	IGlar+IAsp	Severe	NR	NR	Frequency	NR	NR	No difference	NR
[Abstract]	NPH+IAsp	Severe	NR	NR	Frequency	NR	NR		
Kolendorf <i>et</i> <i>al.</i> , 2006 ³⁹	IDet+IAsp	Overall	NR	116 (92.8)	Pts (%)	NR	NR	Overall: RR 0.82 (95% CIL: 0.73,	Overall: All SMPG values <3.1 mmol/L or recorded signs and
				1281	Episodes			p=0.001	symptoms of
				53.3	Episodes/pt/			Severe: NS	hypoglycemia during
					year	_		Nocturnal: RR	the last 10 weeks of
		Severe		19	Episodes			0.5 (0.38, 0.65)	each treatment period
		Severe at night		4				and p<0.0001 All confirmed:	and recorded in the subject diaries (They
		Hypoglycemic		0				RR 0.84 (0.72,	were included in the
		coma						0.97) and	analysis of
		Nocturnal		58 (46.4)	Pts (%)			p=0.0190	nypogiycemia.)
				145	Episodes			symptomatic:	others is required
				6	Episodes/pt/			RR 0.81(0.68,	Nocturnal: episodes
					year	4		0.95) and	happened between
					21 (21)	4		p=0.012	23:00 and 6:00
		Diurnal		108 (86.4)	Pts (%)				

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (Endpoint vs. Baseline)	p-value Between Treatments	Definition of Hypoglycemia
				1,120	Episodes				
				46.6	Episodes/pt/				
					year				
		All confirmed		103(82.4)	Pts (%)				
				699	Episodes				
				29.1	Episodes/pt/				
					year	-			
		All		78 (62.4)	Pts (%)	-			
		symptomatic		560	Episodes				
				23.3	Episodes/pt/				
					year	ND			
	NPH+IAsp	Overall	NR	118 (92.2)	Pts (%)	NK	NR		
				1,592	Episodes				
				64.7	Episodes/pt/				
		Caucara		22	year				
		Severe		33	Episodes				
		Severe at night		11					
		сота		2					
		Nocturnal		81 (63.3)	Pts (%)				
				295	Episodes				
				12	Episodes/pt/				
					year				
		Diurnal		112 (87.5)	Pts (%)				
				1,265	Episodes				
				51.5	Episodes/pt/ vear				
		All confirmed		108 (84.4)	Pts (%)	-			
				865	Episodes	1			
				35.2	Episodes/pt/	1			
					year				
		All		84 (65.6)	Pts (%)	1			
		symptomatic		693	Episodes	1			

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (Endpoint	p-value Between Treatments	Definition of Hypoglycemia
						Dasenne	Baseline)		
				28.2	Episodes/pt/ year				
Kudva <i>et al.,</i> 2005 ⁶⁵	IGlar+IAsp	Overall	NR	24.5±2.99 [†]	Episodes/pt/ 32 weeks	NR	NR	p=0.05 for overall, p=0.001	Overall: symptoms of hypoglycemia with BG<60 mg/dL Serious: requiring assistance with BG<50 mg/dL
		Day		19.9±2.48 [†]				for nocturnal	
		Nocturnal		4.6±1.18 ⁺					
		Severe		0.1±0.07 [†]					
	UL+IAsp	Overall	NR	31.3±4.04 [†]	Episodes/pt/ 32 weeks	NR	NR		
		Day		28.6±3.89 [†]					
		Nocturnal		2.7±0.59 [†]					
		Severe		0.1±0.07 [†]					
Mianowska <i>et al.</i> , 2006 ³⁵ [Abstract]	IGlar+(ILis or HI)	Severe	NR	0	Episodes	NR	NR	NS	NR
	NPH+(ILis or HI)	Severe	NR	0	Episodes	NR	NR		
Murphy <i>et</i>	IGlar+ILis	Severe	NR	0	Episodes	NR	NR	NR for severe,	Severe: requiring
<i>al.</i> , 2003 ³⁰			1	8 (32)	Pts (%)	-		p=0.17 for # of	assistance of another
		Nocturnal		29	Episodes			for $\#$ of pts	with a blood glucose
		Severe	NP	294	Enisodes	NP	NP	(paired	level <2.8 mmol/L or
		Jevele		14 (56)	Pts (%)	NR		analysis) but	with prompt recovery
		Nocturnal	1	41	Episodes			p<0.05	after oral

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (Endpoint vs. Baseline)	p-value Between Treatments	Definition of Hypoglycemia
		Symptomatic		250					
Pesic <i>et al.</i> , 2006 ⁵¹	IGlar+lAsp	Mild	NR	6.7±1.0*	Episodes/pts- month	NR	NR	IGlar+IAsp vs. NPH (q.d.)+IAsp,	NR
[ADSTRACT]	NPH (q.d.)+lAsp	Mild	NR	8.2±2.4*	Episodes/pts- month	NR	NR	p<0.05, IGlar+IAsp vs.	
	NPH (b.i.d.)+IAsp	Mild	NR	9.5±1.7*	Episodes/pts- month	NR	NR	NPH (b.i.d.)+IAsp, p<0.05	
Pieber <i>et al.,</i> 2007 ⁴⁸	IDet+IAsp	Overall	NR	126 (79.7)	Pts (%) Enisodes	NR	NR	RR 0.96 (95%Cl: 0.68, 1.35) and	Severe: if help from a third party was required
,		Nocturnal		77 (48.7)	Pts (%)	-		p=0.811 for	Nocturnal: episodes

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (Endpoint vs. Baseline)	p-value Between Treatments	Definition of Hypoglycemia
				254	Episodes		buschney		
		Severe	-	3 (1.9)	Pts (%)	-			
				4	Episodes				
		Confirmed		120 (75.9)	Pts (%)				
				1253	Episodes				
		Symptomatic		69 (47.3)	Pts (%)				
				695	Episodes				
	IGlar+IAsp	Overall	NR	118 (76.6)	Pts (%)	NR	NR		
				1923	Episodes				
		Nocturnal		81 (52.6)	Pts (%)				
				381	Episodes				
		Severe		12 (7.8)	Pts (%)				
				15	Episodes				
		Confirmed		108 (70.1)	Pts (%)				
				1330	Episodes				
		Symptomatic		74 (48.1)	Pts (%)				
				578	Episodes				
Pieber <i>et al.</i> ,	IDet _{m+d} +IAsp	Overall	NR	100 (72)	Pts (%)	NR	NR	IDet _{m+d} +IAsp vs.	Nocturnal: between
2005 ⁴²		Nocturnal		60 (43)				IDet _{m+b} +IAsp vs.	23:00 and 06:00
		Major		5 (4)				NPH _{m+b} +lAsp,	
		Minor		88 (63)				NS	
		Symptom		69 (50)					
	IDet _{m+b} +IAsp	Overall	NR	92 (70)	Pts (%)	NR	NR		
		Nocturnal		51 (39)					
		Major		5 (4)					
		Minor		78 (59)					
		Symptom		64 (48)					
	NPH _{m+b} +IAsp	Overall	NR	100 (78)	Pts (%)	NR	NR		
		Nocturnal]	60 (47)					
		Major		4 (3)					
		Minor		89 (69)					

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Bacoline	p-value (Endpoint	p-value Between	Definition of Hypoglycemia
						Dasenne	Baseline)	Treatments	
		Symptom		68 (53)					
Peiber <i>et al.</i> ,	IGlar [30]+HI	Symptom	NR	87 (79)	Pts (%)	NR	NR	IGlar [30]+HI,	Overall: BG<2.8 mmol/L
2000 ⁵²		Nocturnal		39 (36)				IGlar [80]+HI vs.	Severe: requiring
		Severe		7 (6)				NPH+HI,	assistance
	IGlar [80]+HI	Symptom	NR	82 (73)	Pts (%)	NR	NR	p=0.003/107 nocturnal, NS for symptom and severe	
		Nocturnal		41 (36)					
		Severe		5 (4)					
	NPH+HI	Symptom	NR	87 (79)	Pts (%)	NR	NR		
		Nocturnal		61 (56)					
		Severe		5 (5)					
Porcellati <i>et</i>	IGlar (dinner	Mild	NR	7.2±0.5	Episodes/pt/	NR	NR	p<0.05 for mild,	Overall: BG<4.0 mmol/L
<i>al.</i> , 2004 ⁰¹	time)+ILis	Day		6.0±0.6†	30 days			day and nocturnal	(72 mg/dL)
		Nocturnal		1.2±0.2 [†]					assistance
	NPH (4 times/day)+	Mild	NR	13.2±0.6	Episodes/pt/ 30 days	NR	NR		Nocturnal: between 01:00 and 07:30
		Day		10±0.8 [†]					
		Nocturnal		3.2±0.3 [†]					
Raskin <i>et al.</i> ,	IGlar+ILis	Overall	NR	281 (90.6)	Pts (%)	NR	NR	NS	Overall (Symptomatic):
2000 ⁵⁹		Nocturnal]	214 (69.0)					symptoms of
		Severe		20 (6.5)					hypoglycemia
	NPH+ILis	Overall	NR	280 (90.6)	Pts (%)	NR	NR		assistance with BG(2.0
		Nocturnal		195 (63.1)					

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (Endpoint vs.	p-value Between Treatments	Definition of Hypoglycemia
							Baseline)		
		Severe		16 (5.2)					
Ratner <i>et al.</i> ,	IGlar+HI	Overall	NR	105 (39.9)	Pts (%)	NR	NR	l vs. II, p<0.05	Overall: symptoms or
2000		Nocturnal		48 (18.2)				nocturnal	mg/dL)
		Overall	NIP	5 (1.9)	 Dtc (%)	NIP	NP		Severe: requiring
		Overall		155 (49.2)	1 (3 (70)				assistance
		Nocturnal		73 (27.1)					Nocturnal: occurring
		Severe		15 (5.6)					bedtime insulin dose
									and before the morning
									BG measurement
Robertson <i>et</i>	IDet+IAsp	Overall	NR	223 (96.1)	Pts (%)	NR	NR	RR 0.89 (95%CI:	Severe: episodes
<i>al.</i> , 2007 ³⁰				9059	Episodes	_		0.69, 1.14) and	requiring assistance
		Severe		37 (15.9)	Pts (%)	_		overall. RR 0.91	due to severe central
		Nu l u l		104	Episodes	_		(0.42, 1.95) and	nervous system
		Nocturnal		174 (75.0)	Pts (%)	-		p=0.799 for	dysfunction; based on
		Confirmed		1192	Episodes	-		severe, RR 0.74	the definition used by
		Commed		210 (93.1)	PLS (%)	-		(0.55, 0.99) and	the DCCT (Diabetes
		Symptomatic		218 (04 0)	Pts (%)	4		nocturnal RR	Complications Trials)
		Symptomatic		= 210 (94.0) = 282	Fnisodes	-		0.86 (0.67, 1.12)	Nocturnal: 22:00
	NPH+IAsp	Overall	NR	113 (08.3)	Pts (%)	NR	NR	and p=0.275 for	(included) to 07:00
NPF	NPH+IAsp	Overall NK	5,021	Episodes		INK	confirmed, RR	(excluded)	
Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (Endpoint vs. Baseline)	p-value Between Treatments	Definition of Hypoglycemia
---	-----------------------	-------------------------	-----------------------------	-----------------------------	-----------------	----------------------------	--	--	---
		Severe		23 (20.0)	Pts (%)				
				55	Episodes				
		Nocturnal		101 (87.8)	Pts (%)				
				769	Episodes				
		Confirmed		110 (95.7)	Pts (%)				
				2,128	Episodes				
		Symptomatic		107 (93.0)	Pts (%)				
				2,835	Episodes				
Rosenstock <i>et al.,</i> 2000 ⁵⁷	IGlar [30]+HI	Overall	NR	80 (97.6)	Pts (%)	NR	NR	NPH+HI vs. IGlar [30]+HI, or	Overall: symptoms and/or BG<2.8 mmol/L
	IGlar [80]+HI	Overall	NR	86 (100)	Pts (%)	NR		NPH+HI vs.	Severe: symptoms
Descatti et	NPH+HI	Overall	NR nr	82 (93.2)	Pts (%)	NR	NR	IGIar [80]+HI, p=0.03	and/or BG<2.8 mmol/L in which routine activities were curtailed or assistance was required, or the prompt recovery of patient after administration of oral carbohydrate, i.v. glucose, or glucagon administration Nocturnal: between bedtime basal insulin and BG measurement in the morning
Rossetti <i>et</i>	IGIar (dinnortimo)	Overall	12.8±0.2'	8.1±0.8'	Episodes/pt/	NR	p<0.04 (for	IGIar (dinnartima)	Overall: BG<4.0 mmol/L
<i>ai.</i> , 2003	ILis	Nocturnal	NR	1.7±0.2 [†]	30 days	NR	hyper- glycemia)	ILis vs. IGlar (bedtime)+ILis,	assistance Nocturnal: NR
	lGlar	Overall	13.6±0.2 [†]	7.7±0.9 [†]	Episodes/pt/	NR	p<0.04 (for	NS	
	(bedtime)+ ILis	Nocturnal	NR	2.0±0.19 [†]	30 days	NR	mild hyper- glycemia)	IGlar (dinnertime) +ILis and IGlar	
	NPH (4	Overall	13.9±0.1 [†]	12.2±1.3 [†]	Episodes/pt/	NR	NR	(bedtime)+ILis	

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (Endpoint vs. Baseline)	p-value Between Treatments	Definition of Hypoglycemia
		Nocturnal	NR	3.6±0.4 [†]					
Russell- Jones <i>et al.</i> ,	IDet+HI	Overall	NR	448 (93.3)	Pts (%)	NR	NR	p=0.003 for nocturnal	Overall (Minor): BG<2.8 mmol/L (50 mg/dL);
2004 ⁴⁵		Major		31 (6.5)					Symptoms only if not
		Minor		414 (86.3)					confirmed by BG
		Nocturnal]	339 (70.6)					measurement
	NPH+HI	Overall	NR	229 (92.7)	Pts (%)	NR	NR		Severe: requiring
		Major		22 (8.9)					Assistance
		Minor		207 (83.8)					23.00 and 06.00
		Nocturnal		180 (72.9)					23.00 414 00.00
Schober <i>et</i>	IGlar+HI	Overall	NR	138 (79.3)	Pts (%)	NR	NR	NS	Overall: BG<2.8 mmol/L
<i>al.</i> , 2002 ³²		Severe		40 (23.0)					Severe: BG<2.8 mmol/L,
		Nocturnal		22 (12.6)					requiring assistance or
	NPH+HI	Overall	NR	138 (78.9)	Pts (%)	NR	NR		experiencing prompt
		Severe		50 (28.6)					carbohydrate or i v
		Nocturnal		31 (17.7)					glucose, or glucagon administration Nocturnal: NR
Standl <i>et al.</i> ,	IDet+HI	Overall	NR	135 (2.45)	Pts	NR	NR	p=0.067 for	Overall (Minor): BG<2.8
2004 ⁴⁶		Major		18 (0.02)	(Episodes/pt/			nocturnal	mmol/L; Symptoms
		Minor		121 (1.24)	30 days)				only if not confirmed by
		Nocturnal		102 (0.45)					BG measurement
		Symptom]	106 (1.18)					severe (Major):
	NPH+HI	Overall	NR	113 (3.48)	Pts	NR	NR		Nocturnal: NR
		Major		14 (0.01)	(Episodes/pt/				
		Minor		106 (1.79)	30 days)				
		Nocturnal		94 (0.63)					
		Symptom		94 (1.68)					
Vague <i>et al.</i> ,	IDet+IAsp	Overall	NR	271 (5.18)	Pts	NR	NR	p=0.029 for	Overall (Minor): BG<2.8
200344		Major		24 (0.04)	(Episodes/pt/			overall, p=0.011	mmol/L; Symptoms

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (Endpoint vs. Baseline)	p-value Between Treatments	Definition of Hypoglycemia
		Minor		259 (2.19)					
		Nocturnal		198 (0.64)					
		Symptom		236 (2.94)					
	NPH+IAsp	Overall	NR	138 (6.70)	Pts	NR	NR		
		Major		21 (0.06)	(Episodes/pt/				
		Minor		129 (3.03)	30 days)				
		Nocturnal		110 (0.96)					
		Symptom		121 (3.61)					
White <i>et al.</i> ,	IGlar+ILis	Confirmed	NR	15	Pts	NR	NR	NS	Overall: confirmed
2006 ³⁴		Severe		6					clinical relevant
[Abstract]	NPH (or	Confirmed	NR	8	Pts	NR	NR		hypoglycemia: BG<36
	lente)+ILis	Severe		4					mg/dL (2 mmol/L)
Witthaus <i>et</i>	IGlar+HI	Perceived	NR	NR	NR	NR	NR	p=0.0024 at	NR
<i>al.</i> , 2001 ⁵⁸		frequency						week 20 in	
	NPH+HI	Perceived frequency	NR	NR	NR	NR	NR	tavour of IGlar	

*mean±SD; [†]mean±SE. 12h=12 hour interval; BG=blood glucose; b.i.d.=twice a day; DM=diabetes mellitus; HI=conventional human insulin, IAsp=insulin aspart, IDet=insulin detemir, IGIar=insulin glargine, ILis=insulin lispro; m+b=morning and bedtime; m+d=morning and dinner time; RCT=randomized controlled trial; NPH=neutral protamine Hagedorn; NR=not reported, NS=not significant, pt=patient; q.d.=every day; RR=relative risk.

APPENDIX 10B: HYPOGLYCEMIA DATA ON TYPE 2 DM PATIENTS

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (endpoint vs. baseline)	p-value between Treatments	Definition of Hypoglycemia										
Eliaschewitz	IGlar+Glim	Symptomatic	NR	122 (52.8)	Pts (%)	NR	NR	Symptomatic:	Severe: symptoms										
<i>et al.</i> , 2006 ⁷⁷				5	Episodes/ pt-yr			p=0.042 and for # of patients,	consistent with hypoglycemia										
		Severe		6 (2.6)	Pts (%)			episodes/pt-yr	from another person										
				0.1	Episodes/ pt-yr			Severe: p=0.303 for # of	and associated with BG level <50 mg/dL										
		Nocturnal		47 (20.4)	47 (20.4) Pts (%) patie	patients,	(<2.8mmol/L) or with												
				1.1	Episodes/ pt-yr			p=0.369 for episodes/pt-yr	prompt recovery after oral carbohydrate, i.v.										
		Confirmed-		39 (16.9)	Pts (%)			Nocturnal:	glucose or glucagons.										
		nocturnal		0.8	Episodes/pt- yr			patients, p=0.001 for	symptomatic hypoglycemia that occurred while the patient was asleep between bedtime and catting up in the										
	NPH+Glim	Symptomatic NR	NR	157 (62.8)	Pts (%)	NR	NR	episodes/pt-yr Confirmed nocturnal:											
				7.2	Episodes/pt- yr														
		Severe	-									11 (4.4)	Pts (%)			p<0.010 for # of	getting up in the morning.		
				0.2	Episodes/pt- yr			patients, p=0.001 for episodes/pt-yr	Major: not reported Moderate:										
		Nocturnal		-	-	-	-	-		-		_	-	_	87 (34.8)	Pts (%)			
				3.1	Episodes/pt- yr				(<2.8mmol/L) Mild: BG 50 to 75mg/dL										
		Confirmed-		75 (30.0)	Pts (%)				Other: symptomatic										
		nocturnal		2.3	Episodes/pt- yr				confirmed hypoglycemia were those associated with a FBG ≤75 mg/dL (≤4.2 mmol/L)										

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (endpoint vs. baseline)	p-value between Treatments	Definition of Hypoglycemia
Fonseca <i>et</i>	IGlar+HI	Symptom	NR	24 (46)	Pts (%)	NR	NR	p<0.05 for	Overall: symptoms,
<i>al.</i> , 2004 ⁷⁵		Severe		o (o)				symptomatic,	confirmed by BG<2.8
[Subgroup analysis of		Nocturnal		8 (15)				p<0.10 for nocturnal)	mmol/L (50 mg/dL)
Rosenstock	NPH+HI	Symptom	NR	29 (60)	Pts (%)	NR	NR	nocturnary	assistance, and BG <2.0
<i>et al.</i> 74		Severe		1 (2)					mmol/L (36 mg/dL) or
		Nocturnal		13 (27)					associated with prompt recovery after oral carbohydrate, i.v. glucose, or glucagon administration Nocturnal: between bedtime basal insulin injection and before morning
Fritsche <i>et</i>	lGlar	Overall	NR	175 (74)	Pts (%)	NR	NR	IGlar(morning)+	Overall: BG <4.2
<i>al.</i> , 2003 ⁷⁸	(morning)	Symptom		133 (56)				Glim vs. NPH	mmol/L (75 mg/dL)
	+Glim	Nocturnal		39 (17)				(bedtime)+	Severe: requiring
		Severe		5 (2.1)				for nocturnal	mmol/L (50 mg/dL) or
	lGlar	Overall	NR	155 (68)	Pts (%)	NR	NR	lGlar	associated with
	(bedtime) +Glim	Symptom		98 (43)				(bedtime)+Glim	prompt recovery after
		Nocturnal		52 (23)				vs. NPH (bedtime)+	oral carbonydrate, I.V. glucose or glucagon
		Severe		4 (1.8)				Glim, p<0.001	administration
	NPH(bedtime)	Overall	NR	173 (75)	Pts (%)	NR	NR	for nocturnal	Nocturnal: between
	+Glim	Symptom		135 (58)				IGlar	bedtime after the
		Nocturnal]	89 (38)				(beatime)+Glim	evening injection and

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (endpoint vs.	p-value between Treatments	Definition of Hypoglycemia
		Severe		6 (2.6)			Dasenne)		
Haak <i>et al.</i> ,	IDet+IAsp	Overall Nocturnal	NR	152 (45)	Pts (%)	NR	NR	NS	Overall (Minor): BG<2.8
2003	NPH+IAsp	Overall	NR	80 (49)	Pts (%)	NR	NR		only, not confirmed by
		Nocturnal		38 (23)					BG measurement Severe: requiring assistance Nocturnal: between 23:00 and 06:00
Hermansen	IDet+OAD	Overall	NR	151 (64)	Pts (%)	NR	NR	p<0.001 for	Symptomatic:
<i>et al.</i> , 2006 ⁶⁹				908	Episodes	-		for nocturnal;	glucose value <4.0
				0.0	yr			p<0.001 for	mmol/L [<72 mg/dl] or
		Nocturnal		71 (30)	Pts (%)			for symptoms	glucose value < 3.1
				160	Episodes	-		only	mmol/L [<56 mg/dl] in
				1.52	Episodes/pt- yr				the last 12 weeks of treatment
		Major		1 (0)	Pts (%)				Nocturnal: occurred
				1	Episodes	-			between 23:00 and o6:00
				0.01	Episodes/pt- yr				Major: third-party
		Minor		96 (41)	Pts (%)	-			Minor: self-managed,

387 Episodes 3.67 Episodes/pt- yr Symptoms only 124 (52) Pts (%)	Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (endpoint vs. baseline)	p-value between Treatments	Definition of Hypoglycemia
3.67 Episodes/pt- yr Symptoms only 124 (52) Pts (%)					387	Episodes				
Symptoms 124 (52) Pts (%) only F10 Enisodes					3.67	Episodes/pt-				
Symptoms 124 (52) Pts (%) only F10 Enisodes				-		yr	_			
ONIY FIO Encodes			Symptoms		124 (52)	Pts (%)	_			
jig Lpisous			only		519	Episodes	_			
4.92 Episodes/pt-					4.92	Episodes/pt-				
			Quanall	ND	(9 a)	yr	ND	ND		
NPH+OAD Overall NK 191(80) PLS (%) NK NK		NPH+UAD	Overall	INK	191 (80)	PLS (%)	INK	INK		
1,000 Episodes					1,088	Episodes/nt	_			
vr					15.90	vr				
Nocturnal 112 (47) Pts (%)			Nocturnal	-	112 (47)	Pts (%)				
349 Episodes					349	Episodes				
3.3 Episodes/pt-					3.3	Episodes/pt-				
yr						yr				
Major 6 (3) Pts (%)			Major		6 (3)	Pts (%)				
8 Episodes					8	Episodes				
0.08 Episodes/pt-					0.08	Episodes/pt-				
yr (r)				-	(-)	yr				
Minor 153 (64) Pts (%)			Minor		153 (64)	Pts (%)	_			
755 Episodes					755	Episodes	_			
7.14 Episodes/pt-					7.14	Episodes/pt-				
Symptoms 160 (67) Pts (%)			Symptoms	-	160 (67)	yı Dtc (%)	_			
only on Enisodes			only			Fnisodes				
923 Episodes / t			,		923 872	Episodes/nt				
yr					0.75	yr				
HOE IGlar [30] Overall 1.6 12 (18.8) Pts (%) NR NR IGlar [30] +OAD Overall: BG<2.8	HOE	IGlar [30]	Overall	1.6	12 (18.8)	Pts (%)	NR	NR	IGlar [30] +OAD	Overall: BG<2.8
901/2004 +OAD Nocturnal 4 (6.3) or IGlar [80] mmol/L, classified as	901/2004	+OAD	Nocturnal		4 (6.3)				or IGlar [80]	mmol/L, classified as
Study IGlar Overall 1.4 18 (25) Pts (%) NR NR HOLD ODD VS. symptomatic or	Study	IGlar	Overall	1.4	18 (25)	Pts (%)	NR	NR	+OAD vs.	symptomatic or
[80]+OAD Nocturnal 6 (8.3)	Group,	[80]+OAD	Nocturnal	1	6 (8.3)				INFEHOAD, INS	asymptomatic

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (endpoint	p-value between Treatments	Definition of Hypoglycemia
						basenne	baseline)	frequencies	
	NPH+OAD	Overall	5.9	22 (32.4)	Pts (%)	NR	NR		
		Nocturnal		13 (19.1)					
Massi	IGlar+OAD	Overall	NR	101 (35)	Pts (%)	NR	NR	p=0.002 for	Overall: BG<2.8
et al		Nocturnal		35 (12)				nocturnal	classified as
2003 ⁸¹		Severe		5 (1.7)					symptomatic or
	NPH+OAD	Overall	NR	115 (41)	Pts (%)	NR	NR		asymptomatic
		Nocturnal		67 (24)					Severe: requiring
		Severe		3 (1.1)					mmol/L (50 mg/dL), or prompt recovery after oral carbohydrate, i.v. glucose, or glucagon administration Nocturnal: occurring during sleep, between the evening injection, and before morning FBG measurement or morning injection
Meneghini <i>et al.</i> ,	IGlar (with Metf or Sfu)	NR	NR	NR	NR	NR	NR	In multivariate repeated	NR
2006 ⁸⁷ [Abstract]	Pio (with Metf or Sfu)	NR	NR	NR	NR	NR	NR	measures analysis, IGlar was associated with significantly better outcomes for hypoglycemic (p=0.014)	
Meneghini	IGlar (with	Overall	NR	49 (53.8)	Pts (%)	NR	NR	NR	NR
<i>et al.</i> ,	Mett or Stu)	Severe		7 (7.7)					
2005	Pioglitazone	Overall	NR	19 (23.2)	Pts (%)	NR	NR		

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (endpoint vs. baseline)	p-value between Treatments	Definition of Hypoglycemia
		Severe		1 (1.2)					
Oster <i>et al.,</i> 2006 ⁸⁶	IGlar (with Metf or Sfu)	Overall	NR	47	% of patients	NR	NR	p=0.0001	NR
[Abstract]	Pio (with Metf or Sfu)	Overall	NR	17	% of patients	NR	NR		
Pan <i>et al.</i> ,	IGlar+Glim	Overall	NR	130 (58.8)	Pts (%)	NR	NR	p=0.056 for #	Severe: An event with
2007 ⁷⁶				682	Episodes			of patients and	symptoms consistent
				3.06±4.99*	Mean episodes/pt			p=0.004 for # of episodes for	with hypoglycemia associated with a BG
		Severe	-	5 (2.3)	Pts (%)			for $\#$ of	mmol/L) or with
				5	Episodes			patients and	prompt recovery after
		Nocturnal		0.02±0.15*	Mean episodes/pt			p=0.026 for # of episodes for	oral carbohydrate, intravenous glucose, or glucagon
		Nocturnal		77 (34.8)	Pts (%)			severe; p=0.001	giucagon administration and the
				221	Episodes			patients and	requirement of third
				1.00±2.33*	Mean episodes/pt			p<0.001 for # of episodes for	party assistance Nocturnal: Occurring
		Symptomatic		121 (54.8)	Pts (%)			nocturnal;	during sleep after the
				515	Episodes			p=0.031 for # of	evening insulin
				2.33±4.15*	Mean episodes/pt			p=0.0002 for # of episodes for	getting up in the morning
	NPH+Glim	Overall	NR	150 (67.3)	Pts (%)	NR	NR	symptomatic	5
				1019	Episodes				
				4.57±6.21*	Mean episodes/pt				
		Severe		16 (7.2)	Pts (%)				
				28	Episodes				
				0.13±0.67*	Mean episodes/pt				

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (endpoint vs. baseline)	p-value between Treatments	Definition of Hypoglycemia
		Nocturnal		111 (49.8)	Pts (%)				
				620	Episodes				
				2.78±5.14*	Mean episodes/pt				
		Symptomatic		144 (64.6)	Pts (%)				
				908	Episodes				
				4.07±5.98*	Mean episodes/pt				
Philis-	IDet	Confirmed	NR	32 (19.4)	Pts (%)	NR	NR	IDet (morning)	Nocturnal: episodes
Tsimikas <i>et</i>	(morning)	overall		91	Episodes			+OAD vs. IDet	occurring between 11
<i>al.</i> , 2006 ⁷⁸	+OAD	Major		о	Pts (%)			(evening) +OAD_IDet	p.m. and 6 a.m. Major: Requiring third-
				0	Episodes			(morning)	party assistance (in
		Confirmed		4 (2.4)	Pts (%)			+OAD vs.	which case a blood
		nocturnal		6	Episodes			NPH+OAD, and	glucose reading was
	IDet (evening)	Confirmed	NR	27 (16.0) 82	Pts (%)	NR	NR	IDet (evening)	not required)
	+OAD	overall			Episodes			NPH+OAD: NS.	plasma glucose <3.1
		Major		2 (1.2)	Pts (%)			NS, p=0.019 for	mmol/L and patients
				2	Episodes			overall,	were able to self-
		Confirmed		8 (4.7)	Pts (%)			respectively;	manage the event
		nocturnal		19	Episodes			and $p=0.031$ for	
	NPH+OAD	Confirmed	NR	53 (32.3)	Pts (%)	NR	NR	nocturnal,	
		overall	-	153	Episodes	_		respectively	
		Major		0		_			
				0		4			
		Confirmed		22 (13.4)		4			
		nocturnal		47					

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (endpoint vs. baseline)	p-value between Treatments	Definition of Hypoglycemia
Raskin <i>et al.</i> , 2006 ⁷² [Abstract]	IDet+IAsp	NR	NR	NR	NR	NR	NR	No treatment differences in risk of hypoglycemic episodes were detected	NR
	lGlar+lAsp	NR	NR	NR	NR	NR	NR		
Raslova <i>et</i>	IDet+IAsp	Overall	NR	65 (34.6)	Pts (%)	NR	NR	p=0.65 for	Nocturnal: occurred
<i>al.</i> , 2004 ⁷¹				269	Episodes			overall; p=0.14	between 23:00 and
		Nocturnal		28 (14.9)	Pts (%)			for nocturnal; n=0.76 for	6:00 Maior: Individual
				49	Episodes			minor; p=0.65	unable to treat
		Major		2 (1.1)	Pts (%)			for symptoms	himself/herself
				2	Episodes				Minor: Plasma glucose
		Minor		45 (23.9)	Pts (%)				<3.1 mmol/L and
				108	Episodes				the episode himself or
		Symptom		45 (23.9)	Pts (%)				herself
				159	Episodes				Symptom only: if
	NPH+HI	Overall	NR	70 (36.1) 317	Pts (%)	NR	NR		plasma glucose >3.1
			-		Episodes	-			glucose measurement
		Nocturnal		34 (17.5)	Pts (%)	_			existed
			-	82	Episodes	_			
		Major		1 (0.5)	Pts (%)				
			-	1	Episodes				
		Minor		45 (23.2)	Pts (%)				
			-	125	Episodes				
		Symptom		49 (25.3) 191	Pts (%)				
		0	ND		Episodes	ND	ND		
	iGlar+OAD	Overall	NK	13.9	Episodes/pt-	NK	NK	p<0.02 for	$Overall: BG \leq 4.0$
<i>un,</i> 2005		Symptom	1	9.2	у.			for symptom,	Severe: requiring
l	ł	l	l	1	ł	ļ			

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (endpoint vs. baseline)	p-value between Treatments	Definition of Hypoglycemia
		Nocturnal		4					
		Severe		14 episodes/9 patients					
	NPH+OAD	Overall	NR	17.7	Episodes/pt-	NR	NR		
		Symptom		12.9	yr				
		Nocturnal		6.9					
		Severe		9 episodes/7 patients					
Rosenstock <i>et al.</i> , 2006 ⁷³ [Abstract]	IDet+OAD	Overall	NR	NR	NR	NR	NR	RR 0.94 and NS for overall; RR 1.05 and NS for nocturnal	NR
		Nocturnal							
	IGlar+OAD	Overall	NR	NR	NR	NR	NR		
		Nocturnal							
Rosenstock	lGlar	Overall	NR	57	Pts	NR	NR	p=0.0528 for	Overall: BG<3.9
<i>et al.</i> ,	(bedtime)+Sfu	Symptom		26				overall,	mmol/L (70 mg/dL),
2006	(max)+meti	Nocturnal		29				symptomatic.	mg/dL). or <2.0
		Severe		3				p=0.02 for	mmol/L (36 mg/dL)
	Rosi+Sfu	Overall	NR	47	Pts	NR	NR	nocturnal	Severe: requiring
	(max)+Mett	Symptom		14					assistance, with
		Nocturnal		12					mg/dl) or prompt
		Severe		6					recovery after oral carbohydrate, i.v. glucose, or glucagon administration Nocturnal: occurring after evening insulin injection and before getting up in the morning

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (endpoint vs. baseline)	p-value between Treatments	Definition of Hypoglycemia
Rosenstock	IGlar+HI	Overall	25.5	159 (61.4)	Pts (%)	NR	NR	NS for overall,	Overall: symptoms and
<i>et al.</i> ,		Nocturnal		81 (31.3)				p=0.016 for	BG <2.8 mmol/L
2001	NPH+HI	Overall	29.7	173 (66.8)	Pts (%)	NR	NR	noctumar	assistance and BG<2.0
		Nocturnal		104 (40.2)					mmol/L or prompt recovery after oral carbohydrate, i.v. glucose, or glucagon administration Nocturnal: occurring during sleep, after the evening injection and before rising in the morning (before morning BG measurement and insulin injection)
Tajima <i>et</i> <i>al.</i> , 2004 ⁹¹	IDet+OAD	Overall	NR	4.51	Events/Pts/ Year	NR	NR	P=0.06 for overall, p=0.08	NR
	NPH+OAD	Overall	NR	6.46	Events/Pts/ Year	NR	NR	for nocturnal	
Triplitt <i>et</i> <i>al.,</i> 2006 ⁸⁹	IGlar+Sfu (max)+Metf (max)	Overall	NR	0	Pts	NR	NR	NR	NR
	Rosi+Sfu (max)+Metf (max)	Overall	NR	1	Pts	NR	NR		
Vinik and Zhang,	IGlar+Sfu+ Metf (max)	NR	NR	NR	NR	NR	NR	NR	Confirmed hypoglycemia: plasma
2007 ⁹⁰	Rosi+Sfu+ Metf (max)	NR	NR	NR	NR	NR	NR		glucose<3.9 mmol/l (from RM3497)
Wang et	IGlar+Glip	Overall	NR	2	Pts	NR	NR	p=0.129 for	Hypoglycemia event:
<i>al.</i> , 2007 ⁷⁹				2	Episodes			overall;	defined as a sensor

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (endpoint vs. baseline)	p-value between Treatments	Definition of Hypoglycemia
		Severe		0	Episodes				
		Nocturnal		1	Pts				
				1	Episodes				
	NPH+Glip	Overall	NR	4	Pts	NR	NR		
				6	Episodes				
		Severe		0	Episodes				
		Nocturnal		4	Pts				
				4	Episodes				
Yki- Järvinen <i>et</i> <i>al.</i> , 2006 ⁸⁰	lGlar+Metf	Overall	3 (5)	33 (54) at weeks 25 to 36	Pts (%)	NR	NR	NS	Overall: BG≤4.0 mmol/L Severe: requiring
	NPH+Metf	Overall	2 (4)	28 (57) at weeks 25 to 36		NR	NR assis perso mmo reco carb gluco adm	assistance of another person and BG <3.1 mmol/L or prompt recovery after oral carbohydrate, i.v. glucose, or glucagon administration	
Yki-	IGlar+OAD	Overall	NR	70 (32.5)	Pts (%)	NR	NR	p=0.04 for	Overall: BG<2.8
Järvinen <i>et</i>		Nocturnal		21 (10)				overall,	mmol/L (50 mg/dL),
<i>al.</i> , 2000° ⁴	NPH+OAD	Overall	NR	88 (42.5)	Pts (%)	NR	NR	p=0.0001 for	classified as

Study	Comparators	Type of Hypoglycemia	Hypoglycemia at Baseline	Hypoglycemia at Endpoint	Outcome Unit	Change from Baseline	p-value (endpoint vs. baseline)	p-value between Treatments	Definition of Hypoglycemia
		Nocturnal		50 (23.8)					

*mean±SD. BG=blood glucose; DM=diabetes mellitus; FBG=fasting blood glucose; Glim=glimepiride; Glip=glipizide; HI=conventional human insulin; IAsp=insulin aspart; IDet=insulin detemir; IGlar=insulin glargine; ILis=insulin lispro; i.v.=intravenous; Metf=metformin; NPH=neutral protamine Hagedorn; NR=not reported; NS=not significant; OAD=oral antidiabetic agent; Pio=pioglitazone; pt-yr=patient-year; Pts=patients; Rosi=rosiglitazone; RR=relative risk; Sfu=sulfonylurea.

APPENDIX 11A: MEAN HBA1C AND FPG LEVELS AT ENDPOINT IN RCTS OF TYPE 1 DM

Study	Comparators	HbA1c at Baseline (%)	HbA1c at End Point (%)	A1c (Change from Baseline) (%)	p-value Endpoint vs. Baseline	p-value Between Treatments	Fasting Plasma Glucose at Endpoint (mmol/L)
Ashwell <i>et al.</i> , 2006 ⁶⁴	IGlar+ILis	8.o±o.8*	7.5±0.1 [†]	NR	NR	p<0.001	NR
	NPH+HI	8.0±0.8*	8.0±0.1 [†]	NR	NR		
Bolli <i>et al.</i> , 2006 ⁶³	IGlar+ILis	7.9±0.7*	7.3±0.7*	NR	NR	NS	NR
[Abstract]	NPH+ILis	NPH+ILis 7.9±0.7 7.3±0.7 NR NR IGlar+ILis 7.9±0.6* 7.3±1.0* NR NR IGlar+ILis 8 NR -0.12 NR NR PH (or lente) +ILis 8 NR -0.11 NR NR IGlar+IAsp 8.53 8.07 NR NR p=0.04 IGlar+IAsp 8.53 8.26 NR NR p=0.04 IDet+IAsp 8.18±1.14* 7.53±0.10 [†] -0.64 NR NS IDet+IAsp 8.03±1.11* 7.59±0.13 [†] -0.56 NR NS Iar+glimepiride NR NR NR NR NR					
Chase <i>et al.</i> , 2006 ³³	IGlar+ILis	8	NR	-0.12	NR	NR	NR
[Abstract]	NPH (or lente) +ILis	8	NR	-0.11	NR		
Davies <i>et al.</i> , 2005 ⁵⁰	lGlar+lAsp	8.53	8.07	NR	NR	p=0.04	NR
[Abstract]	NPH+IAsp	8.53	8.26	NR	NR		
De Leeuw <i>et al.</i> , 2005 ⁴⁰	IDet+IAsp	8.18±1.14*	7.53±0.10 [†]	-0.64	NR	NS	NR
	NPH+IAsp	8.03±1.11*	7.59±0.13 [†]	-0.56	NR		
Eliaschewitz <i>et al.</i> ,	IGlar+glimepiride	NR	NR	NR	NR	NR	5.33±2.34*
200677	NPH+glimepiride	NPH+lAsp 8.03±1.11* 7.59±0.13 [†] -0.56 NR IGlar+glimepiride NR NR NR NR NPH+glimepiride NR NR NR NR	5.44±2.21*				
Fonseca <i>et al.</i> , 2004 ⁷⁵	IGlar+HI	NR	NR	NR	NR	NR	8.23±2.57*
[Subgroup analysis of Rosenstock ⁷⁴]	NPH+HI	NR	NR	NR	NR		7.85±2.11*
Fritsche <i>et al.</i> , 2003 ⁷⁸	IGlar (morning)+Glim	NR	NR	NR	NR	NR	7.0±1.9*
	IGlar (bedtime)+Glim	NR	NR	NR	NR		6.8±1.9*
	NPH (bedtime)+Glim	NR	NR	NR	NR		6.9±1.9*
Fulcher <i>et al.</i> , 2005 ⁶⁰	IGlar+ILis	9.2±1.1*	8.3±0.14 [†]	-0.89	p<0.05	p=0.01	NR
	NPH+ILis	9.7±1.3*	9.1±0.14 [†]	-0.67	p<0.05		
Garg <i>et al.</i> , 1998 ⁵³	IGlar+HI	NR	NR	-0.40%	NR	P>0.05	NR
[Abstract]	NPH+HI	NR	NR	-0.20%	NR		
Haak <i>et al.</i> , 2005 ⁶⁸	IDet+IAsp	NR	NR	NR	NR	NR	9.7±0.2 [†]
	NPH+IAsp	NR	NR	NR	NR	NR	9.6±0.3 [†]

Study	Comparators	HbA1c at Baseline (%)	HbA1c at End Point (%)	A1c (Change from Baseline) (%)	p-value Endpoint vs. Baseline	p-value Between Treatments	Fasting Plasma Glucose at Endpoint (mmol/L)
Hermansen <i>et al.</i> ,	IDet+IAsp	8.48±1.12*	7.88±0.05*	-0.5	NR	p<0.001	NR
2004 ⁴⁹	NPH+HI	8.29±1.19*	8.11±0.05*	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
Hermansen <i>et al.</i> ,	IDet+OAD	NR	NR	NR	NR	NR	6.9
2006 ⁶⁹	NPH+OAD	NR	NR	NR	NR		6.6
Hermansen <i>et al.</i> , 2001 ⁴³	IDet+HI	NR	NR	NR	NR	NR	NR
	NPH+HI	NR	NR	NR	NR		
Hershon <i>et al.</i> , 2004 ⁵⁴	IGlar+HI	7.7±1.2*	NR	-0.09±0.07 [†]	NR	NS	NR
	NPH+HI	7.7±1.1*	NR	-0.19±0.07 [†]	NR		
Home <i>et al.</i> , 2005 ⁵⁵	IGlar+HI	7.9±1.2*	NR	0.21±0.05 [†]	NR	NS	NR
	NPH+HI	8.0±1.2*	NR	0.10±0.05 [†]	NR		
Home <i>et al.,</i> 2004 ⁴¹	IDet _{12h} +IAsp	8.55±1.20*	7.75±0.07 [†]	-0.07 (-0.85%)	NR	IDet _{12h} +IAsp and IDet _{m+b} +IAsp vs.	NR
	IDet _{m+b} +IAsp	8.74±1.20*	7.78±0.07 [†]	-0.07 (-0.82%)	NR	NPH _{m+b} +IAsp, p=0.027	
	NPH _{m+b} +lAsp	8.52±1.19*	7.94±0.07 [†]	-0.07 (-0.65%)	NR		
	NPH+HI	8.2±1.3*	NR	0.12±0.19*	NR		
Kawamura <i>et al.</i> , 2005 ³¹	IGlar+IAsp	NR	7.5±1.1	NR	NR	p<0.01	NR
[Abstract]	NPH+IAsp	NR	8.2±1.3	NR	NR	-	
Kolendorf <i>et al.</i> , 2006 ³⁹	IDet+IAsp	7.9±0.7*	7.6±0.06 [†]	0.3	NR	Mean HbA1c was	NR
	NPH+IAsp	7.9±0.7*	7.6±0.06†	0.3	NR	identical after 16 weeks No p-value was reported	
Kudva <i>et al.</i> , 2005 ⁶⁵	IGlar+IAsp	6.94±0.14 [†]	6.82±0.13 [†]	NR	NR	p=0.03	NR
	UL+IAsp	6.94±0.14 [†]	7.02±0.13 [†]	NR	NR		
Massi Benedetti <i>et al.</i> ,	IGlar+OAD	NR	NR	NR	NR	NR	7.1±0.3 [†]
2003 ⁸¹	NPH+OAD	NR	NR	NR	NR		7.4±0.2 [†]
Meneghini <i>et al.</i> , 2005	IGlar (with Metf or Sfu)	NR	NR	NR	NR	NR	NR
[Abstract] ⁸⁵	Pioglitazone (with Metf or Sfu)	NR	NR	NR	NR		

Study	Comparators	HbA1c at Baseline (%)	HbA1c at End Point (%)	A1c (Change from Baseline) (%)	p-value Endpoint vs. Baseline	p-value Between Treatments	Fasting Plasma Glucose at Endpoint (mmol/L)
Meneghini <i>et al.</i> , 2006 ⁸⁷	IGlar	NR	NR	NR	NR	NR	NR
[abstract] Oster, 2006 ⁸⁶ [abstract]	Pioglitazone	NR	NR	NR	NR		NR
Mianowska <i>et al.</i> , 2006 ³⁵	IGlar+(ILis or HI)	NR	7.6±0.9*	NR	NR	p=0.76	NR
[Abstract]	NPH+(ILis or HI)	NR	7.7±0.9*	NR	NR		
Murphy <i>et al.</i> , 2003 ³⁶	IGlar+ILis	9.3 (7.1 to 12) [‡]	8.7	No mean value of the two periods	NR	p=0.13	NR
	NPH+HI	9.3 (7.1 to 2)‡	9.1	NR	NR		
Pan <i>et al.</i> , 2007 ⁷⁶	IGlar+glimepiride	NR	NR	NR	NR	NR	6.5±1.39*
	NPH+glimepiride	NR	NR	NR	NR		6.6±1.44*
Pesic <i>et al.</i> , 2006 ⁵¹	lGlar+lAsp	7.7±1.2*	6.9±0.5*	NR	NR	NR	
[Abstract]	NPH (q.d.) +IAsp	NR	NR	No change	NR		
	NPH (b.i.d.) +IAsp	7.8±1.0*	7.0±1.2*	NR	NR		
Philis-Tsimikas <i>et al.</i> , 2006 ⁷⁰	IDet+OAD (morning IDet)	NR	NR	NR	NR	NR	8.61±2.1* (FPG)
	IDet+OAD (evening IDet)	NR	NR	NR	NR		7.17±2.05*(FPG)
	NPH+OAD	NR	NR	NR	NR		7.77±2.95*(FPG)
Pieber <i>et al.</i> , 2007 ⁴⁸	IDet+IAsp	8.9 (7.6 to 11.9) [‡]	8.16±0.084 [†]	NR	NR	NR	NR
	IGlar+IAsp	8.8 (7.6 to 11.9) [‡]	8.19±0.082 [†]	NR	NR		
Pieber <i>et al.</i> , 2000 ⁵²	IGlar [30] +HI	8.09±0.11 [†]	7.85±0.10 [†]	-0.25±0.05 [†]	p=0.0001	P=0.03	NR
	IGlar [80] +HI	7.96±0.11 [†]	7.80±0.10 [†]	-0.15±0.05 [†]	p=0.0061		
	NPH+HI	7.85±0.11 [†]	7.79±0.09 [†]	-0.03±0.05 [†]	NS		
Pieber <i>et al.</i> , 2005 ⁴²	IDet _{m+d} +IAsp	8.01±1.24*	7.67±0.07 [†]	-0.43	p<0.05	NS	NR
	IDet _{m+b} +IAsp	8.13±1.37*	7.65±0.07 [†]	-0.49	p<0.05		
	NPH _{m+b} +IAsp	8.08±1.15*	7.73±0.07 [†]	-0.39	p<0.05		
Porcellati <i>et al.</i> , 2004 ⁶¹	IGlar (dinner time) +ILis	7.1±0.1 [†]	6.7±0.1 [†]	NR	p<0.05	p<0.05	NR

Study	Comparators	HbA1c at Baseline	HbA1c at End Point	A1c (Change from	p-value Endpoint	p-value Between Treatments	Fasting Plasma Glucose at Endpoint (mmol/L)
		(%)	(%)	Baseline) (%)	vs. Baseline		
	NPH (4 times/day) +ILis	7.1±0.2 [†]	7.1±0.1 [†]	NR	NS		
Raskin <i>et al.</i> , 2000 ⁵⁹	IGlar+ILis	7.59±1.19*	7.53±1.19*	NR	NR	NS	NR
	NPH+ILis	7.71±1.2*	7.60±1.14*	NR	NR		
Raskin <i>et al.</i> , 2006	IDet+IAsp	NR	NR	NR	NR	NR	7.2
[abstract] ⁷²	Glar+IAsp	NR	NR	NR	NR		7.4
Raslova <i>et al.</i> , 2004 ⁷¹	IDet+IAsp	NR	NR	NR	NR	NR	7.28±0.13 [†]
	NPH+HSI	NR	NR	NR	NR		7.32±0.12 [†]
Ratner <i>et al.</i> , 2000 ⁵⁶	IGlar+HI	7.7±1.2*	7.54±1.2*	-0.16±0.05 [†]	NR	NS	NR
	NPH+HI	7.7±1.1*	7.49±1.1*	-0.21±0.05 [†]	NR		
Riddle <i>et al.</i> , 2003 ⁸²	IGlar+OAD	NR	NR	NR	NR	NR	6.5
	NPH+OAD	NR	NR	NR	NR		6.7
Robertson <i>et al.</i> , 2007 ³⁰	IDet+IAsp	8.8±1.2*	8.0±0.1 [†]	-0.8	NR	NR	NR
	NPH+IAsp	8.7±1.1*	7.9±0.1+	-0.8	NR		
Rosenstock <i>et al.</i> , 2000 ⁵⁷	IGlar [30] +HI	7.8±1.1*	7.4±1.1*	-0.4±0.48*	NR	NR	NR
	IGlar [80] +HI	7.9±1.2*	7.5±1.2*	-0.4±0.49*	NR		
	NPH+HI	8.0±1.2*	7.6±1.2*	-0.4±0.48*	NR		
Rosenstock <i>et al.</i> , 2001 ⁷⁴	IGlar+HI	NR	NR	NR	NR	NR	NR
	NPH+HI	NR	NR	NR	NR		
Rosenstock <i>et al.</i> , 2006 ⁸⁸	IGlar (bedtime)+Sfu	NR	NR	NR	NR	NR	Change from baseline:
	(max) +Metf					-	-3.60±0.23* p=0.001
	Rosi+ Stu (max) +Mett	NR	NR	NR	NR		Change from baseline: -2.57±0.22*
Rosenstock <i>et al.</i> , 200673	IDet	NR	NR	NR	NR	NR	7.1
[abstract]	IGlar	NR	NR	NR	NR		7
Rossetti <i>et al.,</i> 2003 ⁶²	IGlar (dinnertime) +ILis	6.8±0.2 [†]	6.4±0.1 [†]	NR	p<0.04	NR	NR
	IGlar (bedtime) +ILis	7.0±0.2 [†]	6.6±0.1 [†]	NR	p<0.04		
	NPH (4 times/day) +ILis	6.9±0.1 [†]	7.0±0.1 [†]	NR	NS		
Russell-Jones <i>et al.</i> ,	IDet+HI	8.35±1.20*	8.30±1.08*	-0.06±0.92*	NR	NS	NR
2004 ⁴⁵	NPH+HI	8.35±1.21*	8.41±1.32*	0.06±1.05*	NR		

Study	Comparators	HbA1c at Baseline	HbA1c at End Point	A1c (Change from	p-value Endpoint	p-value Between Treatments	Fasting Plasma Glucose at Endpoint (mmol/L)
		(%)	(%)	Baseline) (%)	vs. Baseline		
Schober <i>et al.</i> , 2002 ³²	IGlar+HI	8.48±0.11 [†] ,	8.76±0.11 [†]	0.28±0.09 [†]	NR	NS	NR
		p=0.04				-	
	NPH+HI	8.81±0.11 [†]	9.08±0.11 [†]	0.27±0.09 [†]	NR		
Standl <i>et al.</i> , 2004 ⁴⁶	IDet+HI	7.72±1.26*	7.88±0.082 [†]	NR	NR	NS	NR
	NPH+HI	7.66±1.19*	7.78±0.088 [†]	NR	NR		
Tajima <i>et al.</i> , 2006 ⁹¹	IDet+OAD	7.5 to 10	7.81±0.07 [†]	-0.59	NR	NR	6.97±0.16 [†]
	NPH+OAD	7.5 to 10	7.74±0.07 [†]	-0.67	NR		6.85±0.16 [†]
Triplitt <i>et al.</i> , 2006 ⁸⁹	IGlar	NR	NR	NR	NR	NR	7.72±0.28 [†]
	rosiglitazone	NR	NR	NR	NR		8.9±1.01 [†]
Vague <i>et al.</i> , 2003 ⁴⁴	IDet+IAsp	8.18±1.14*	7.60±0.09 [†]	-0.55	NR	NS	NR
	NPH+IAsp	8.11±1.12*	7.64±0.10 [†]	-0.55	NR		
Vinik and Zhang, 2007 ⁹⁰	IGlar+Sfu+Metf)	NR	NR	NR	NR	NR	6.78±2.12*
	rosiglitazone+Sfu+Metf	NR	NR	NR	NR		7.81±2.55*
Wang <i>et al.</i> , 2007 ⁷⁹	IGlar+glipizide	NR	NR	NR	NR	NR	6.06±1.22*
	NPH+glipizide	NR	NR	NR	NR		5.84±1.26*
White <i>et al.</i> , 2006 ³⁴	IGlar+ILis	9.3	NR	NR	NR	NR	NR
[Abstract]	NPH (or lente)+ILis	9.3	NR	NR	NR		
Witthaus <i>et al.</i> , 2001 ⁵⁸	IGlar+HI	NR	NR	NR	NR	NR	NR
	NPH+HI	NR	NR	NR	NR		
Yki-Järvinen <i>et al.</i> ,	IGlar+OAD	NR	NR	NR	NR	NR	NR
2000 ⁸⁴	NPH+OAD	NR	NR	NR	NR		NR
Yki-Järvinen <i>et al.</i> ,	IGlar+Metf	NR	NR	NR	NR	NR	5.7±0.02 [†]
200680	NPH+Metf	NR	NR	NR	NR		6.0±0.03 [†]
HOE 901/2004 Study	IGlar [30] +OAD	NR	NR	NR	NR	NR	7
Group, 2003 ⁸³	IGlar [80] +OAD	NR	NR	NR	NR]	6.95
	NPH+OAD	NR	NR	NR	NR		6.53

*mean±SD; [†]mean (95% CI); [‡]mean(range). 12h=12 hour interval; A1c=glycosylated hemoglobin; b.i.d.=twice a day; DM=diabetes mellitus; FPG=fasting blood glucose; Glim=glimepiride; HbA1c=glycosylated hemoglobin; HI=conventional human insulin; IAsp=insulin aspart; IDet=insulin detemir; IGIar=insulin glargine; ILis=insulin lispro; m+b=morning and bedtime; m+d=morning and dinner time; Metf=metformin; NPH=neutral protamine Hagedorn; NR=not reported; NS=not significant; OAD=oral antidiabetic agent; pt=patient; q.d.=every day; Rosi=rosiglitazone; Sfu=sulfonylurea; UL=ultralente; vs.=versus.

APPENDIX 11B: MEAN HBA1C AND FPG LEVELS AT ENDPOINT IN RCTS OF TYPE 2 DM

Study	Comparators	HbA1c at Baseline (%)	HbA1c at End Point (%)	A1c (Change from Baseline) (%)	p-value Endpoint vs. Baseline	p-value Between Treatments	Fasting Plasma Glucose at Endpoint (mmol/L)
Eliaschewitz <i>et al.</i> , 2006 ⁷⁷	IGlar+glimepiride	9.1±1.0*	7.65±1.30*	-1.38±1.32*	NR	NR	5.33±2.34*
	NPH+glimepiride	9.2±0.9*	7.78±1.29*	-1.44±1.33*	NR		5.44±2.21*
Fonseca <i>et al.</i> , 2004 ⁷⁵ [Subgroup analysis of	IGlar+HI	8.42±1.22*	8.01±1.22*	-0.41	NR	NR	NS
Rosenstock ⁷⁴]	NPH+HI	8.36±0.96*	7.90±0.96*	-0.46	NR		7.85±2.11*
Fritsche <i>et al.</i> , 2003 ⁷⁸	lGlar (morning)+Glim	9.1±1.0*	7.8±1.2*	-1.24 (90%Cl, -1.10 to -1.38)	NR	lGlar (morning) + Glim vs. lGlar	7.0±1.9*
	IGlar (bedtime)+Glim	9.1±1.0*	8.1±1.3*	-0.96 (90%Cl, -0.81 to -1.10)	NR	(bedtime) + Glim, p=0.008; lGlar	6.8±1.9*
	NPH (bedtime)+Glim	9.1±1.1*	8.3±1.3*	-0.84 (90%Cl, -0.69 to -0.98)	NR	(morning) + Glim vs. NPH (bedtime) + Glim, p<0.001	6.9±1.9*
Haak <i>et al.</i> , 2005 ⁶⁸	IDet+IAsp	7.9±1.3*	7.6±0.1 [†]	-0.2	p=0.004	NS	9.7±0.2 [†]
	NPH+IAsp	7.8±1.3*	7.5±0.1 [†]	-0.4	p=0.0001		9.6±0.3 [†]
Hermansen <i>et al.</i> , 2006 ⁶⁹	IDet+OAD	8.61±0.78*	6.8	-1.8	NS	NS	6.9
	NPH+OAD	8.51±0.76*	6.6	-1.9	NS		6.6
Massi Benedetti <i>et al.</i> ,	IGlar+OAD	9.0±1.2*	8.54±1.2*	-0.46	NR	NS	7.1±0.3 [†]
2003 ⁸¹	NPH+OAD	8.9±1.1*	8.52±1.1*	-0.38	NR		7.4±0.2 [†]
Meneghini <i>et al.</i> , 2005	IGlar (with Metf or Sfu)	8–12	6.7	-2.6	NR	p≤0.05	NR
[Abstract] ⁸⁵	Pioglitazone (with Metf or Sfu)	8–12	7	-2.3	NR		
Meneghini <i>et al.</i> , 2006 [abstract] ⁸⁷	lGlar	NR	NR	-2.6	NR	NR	NR
	Pioglitazone	NR	NR	-2.3	NR		

Study	Comparators	HbA1c at Baseline (%)	HbA1c at End Point (%)	A1c (Change from Baseline) (%)	p-value Endpoint vs. Baseline	p-value Between Treatments	Fasting Plasma Glucose at Endpoint (mmol/L)
Oster <i>et al.</i> , 2006 ⁸⁶ [Abstract]	IGlar (with Metf or Sfu)	8–12	6.7	-2.6	NR	p≤o.o5	
	Pio (with Metf or Sfu)	8–12	7	-2.3	NR		
Pan <i>et al.</i> , 2007 ⁷⁶	IGlar+glimepiride	9.02±0.88*	7.90±1.16*	-1.1	NR	NR	6.5±1.39*
	NPH+glimepiride	9.05±0.84*	8.13±1.19*	-0.92	NR		6.6±1.44*
Philis-Tsimikas <i>et al.</i> , 2006 ⁷⁰	IDet+OAD (morning IDet)	9.08±0.97*	7.5±0.96*	-1.58±1.07*	NR	NS	8.61±2.1*
	IDet+OAD (evening IDet)	8.88±0.95*	7.4±0.77*	-1.48±1.01*	NR		7.17±2.05*
	NPH+OAD	9.15±1.0*	7.35±0.93*	-1.74±1.08*	NR		7.77±2.95*
Raskin <i>et al.</i> , 2006,	IDet+IAsp	NR	NR	-1.1	<0.0001	NR	7.2
[abstract] ⁷²	Glar+IAsp	NR	NR	-1.3	<0.0001		7.4
Raslova <i>et al.</i> , 2004 ⁷¹	IDet+IAsp	8.16±1.28*	7.46	-0.65	<0.001	p=0.515 (NS)	7.28±0.13 [†]
	NPH+HI	8.08±1.23*	7.52	-0.58	<0.001		7.32±0.12 [†]
Riddle <i>et al.</i> , 2003 ⁸²	IGlar+OAD	8.61±0.9*	6.96±0.9*	NR	NR	NS	6.5
	NPH+OAD	8.56±0.9*	6.97±0.9*	NR	NR		6.7
Rosenstock <i>et al.</i> , 2001 ⁷⁴	IGlar+HI	8.6±1.2*	8.19±1.2*	-0.41±0.1*	p=0.0001	NS	NR
	NPH+HI	8.5±1.2*	7.91±1.2*	-0.59±0.1*	p=0.0001		NR
Rosenstock <i>et al.</i> , 2006 ⁸⁸	IGlar (bedtime)+Sfu (max)+Metf	8.8±1.0*	7.14±1.0*	-1.66	NS	NS	Change from baseline: - 3.60±0.23* p=0.001
	Rosi+Sfu (max)+Metf	8.7±1.0*	7.19±1.0*	-1.51	NS		Change from baseline: -2.57±0.22*
Rosenstock <i>et al.</i> , 200673	IDet	7.5-10	7.2	NR	NR	NR	7.1
[abstract]	IGlar	7.5-10	7.1	NR	NR		7
Triplitt <i>et al.</i> , 2006 ⁸⁹	IGlar	9.1±0.4 [†]	7.6±0.3 [†]	-1.5±0.2 [†]	P<0.0001	NS	7.72±0.28 [†]
	rosiglitazone	9.4±0.3 [†]	7.6±0.4 [†]	-1.8±0.4 [†]	P=0.0025		8.9±1.01 [†]
Vinik and Zhang, 2007 90	IGlar+Sfu+Metf	NR	NR	NR	NR	NR	6.78±2.12*
	rosiglitazone +Stu+ Metf	NR	NR	NR	NR	NR	7.81±2.55*
Wang <i>et al.</i> , 2007 ⁷⁹	IGlar+glipizide	lGlar+Glip	8.77±1.18*	7.62±0.98*	NR	p<0.05	6.06±1.22*
	NPH+glipizide	8.75±1.24*	7.43±0.73*	NR	p<0.05]	5.84±1.26*
Yki-Järvinen <i>et al.</i> , 2000 ⁸⁴	IGlar+OAD	9.1±0.1 [†]	8.34±0.09 [†]	NR	p<0.001	NS	NR

Study	Comparators	HbAıc at Baseline (%)	HbA1c at End Point (%)	A1c (Change from Baseline) (%)	p-value Endpoint vs. Baseline	p-value Between Treatments	Fasting Plasma Glucose at Endpoint (mmol/L)
	NPH+OAD	8.9±0.1 [†]	8.24±0.09 [†]	NR	p<0.001		NR
Yki-Järvinen <i>et al.</i> , 2006 ⁸⁰	lGlar+Metf	9.5±0.1 [†]	7.14±0.12 [†]	NR	NR	p=0.55 (NS)	5.7±0.02 [†]
	NPH+Metf	9.6±0.1 [†]	7.16±0.14 [†]	NR	NR		6.0±0.03 [†]
HOE 901/2004 Study	IGlar [30]+OAD	9.79±1.5*	8.98±1.5*	-0.82	p=0.0001	NS	7
Group, 2003 ⁸³	IGlar [80]+OAD	9.71±1.2*	8.84±1.2*	-0.86	p=0.0001		6.95
	NPH+OAD	9.47±1.4*	8.68±1.4*	-0.79	p=0.0001		6.53

 Imprint OAD
 9.4/±1.4
 8.06±1.4
 -0.79
 p=0.0001
 0.53

 *mean±SD; [†]mean±SE. Atc=glycosylated hemoglobin; DM=diabetes mellitus; FPG=fasting plasma glucose; Gly=glyburide; HbAtc=glycosylated hemoglobin; HI=human insulin; IAsp=insulin aspart; IDet=insulin detemir; IGlar=insulin glargine; ILis=insulin lispro; Metf=metformin; NPH= neutral protamine Hagedorn; RCTs= randomized controlled trials; NR=not reported; OAD=oral antidiabetic; Sfu=sulfonylurea; vs.=versus.

APPENDIX 12A: STUDY-LEVEL BODY WEIGHT AND BMI DATA FROM RCTS IN TYPE 1 DM

Study	Comparators	Weight at Baseline (kg)	Weight at Endpoint (kg)	Weight Change from Baseline (kg)	Weight p-value Endpoint vs. Baseline	Weight p- value between Treatments	BMI at Baseline	BMI at Endpoint	BMI Change from Baseline	BMI p-value Endpoint vs. Baseline	BMI p-value Between Treatments
Davies <i>et al.</i> ,	IGlar+ILis	NR	81.68	NR	NR	p=0.45	NR	NR	NR	NR	NR
2005⁵° [Abstract]	NPH (Insulatard®) +ILis	NR	81.92	NR	NR		NR	NR	NR	NR	
De Leeuw <i>et al.</i> ,	IDet+IAsp	71.3±10.7*	71.2±11.4*	-0.1	NR	p<0.001	NR	NR	NR	NR	NR
2005 ⁴⁰	NPH+IAsp	71.7±12.4*	72.7±13.1*	1.2	NR	Difference between groups (CI) 1.34 (-2.12, -0.56)	NR	NR	NR	NR	
Fulcher <i>et al.</i> ,	IGlar+ILis	NR	NR	1.97	NR	p<0.05	NR	NR	NR	NR	NR
2005 ⁶⁰	NPH+ILis	NR	NR	2.34	NR		NR	NR	NR	NR	
Hermansen <i>et</i> <i>al.</i> , 2004 ⁴⁹	IDet+IAsp	73.5±11.4*	73.0±0.14 [†]	-0.95 (0.14) [†]	NR	p<0.001 for end weight	NR	NR	NR	NR	NR
	NPH+regular insulin	74.2±12.2*	74.1±0.14 [†]	0.07 (0.14) [†]	NR	and change from baseline	NR	NR	NR	NR	
Hershon <i>et al.</i> ,	IGlar+HI	75.5±14.2*	76.0±14.5*	0.7±3.3*	NR	p=0.33	NR	NR	NR	NR	NR
2004 ⁵⁴ (subgroup analysis of Ratiner ⁶⁶)	NPH+HI	75.0±14.6*	75.9±15.2*	1.0±2.9*	NR		NR	NR	NR	NR	
Home <i>et al.,</i> 2004 ⁴¹	IDet _{12h} +IAsp	74.2±12.6*	NR	0.02±0.22 [†]	NR	p=0.018 with IDet	NR	NR	NR	NR	NR
	IDet _{m+b} +IAsp	75.0±12.3*	NR	0.24±.022 [†]	NR	(both regimen)	NR	NR	NR	NR	

Study	Comparators	Weight at Baseline (kg)	Weight at Endpoint (kg)	Weight Change from Baseline (kg)	Weight p-value Endpoint vs. Baseline	Weight p- value between Treatments	BMI at Baseline	BMI at Endpoint	BMI Change from Baseline	BMI p-value Endpoint vs. Baseline	BMI p-value Between Treatments
	NPH _{m+b} +IAsp	75.5±14.0*	NR	0.86±0.23 [†]	NR		NR	NR	NR	NR	
Mianowska <i>et</i> <i>al.</i> , 2006 ³⁵	lGlar	NR	NR	NR	NR	NR	NR	18.7 kg/m²	NR	NR	NS
	NPH	NR	NR	NR	NR		NR	18.5 kg/m²	NR	NR	
Pieber <i>et al.,</i> 2005 ⁴²	IDet _{m+d} +IAsp	75.6±15.0*	NR	-0.6	NR	p<0.001 vs. NPH	NR	NR	NR	NR	NR
	IDet _{m+b} +IAsp	77.0±13.7*	NR	0.1	NR	p<0.001 vs. NPH	NR	NR	NR	NR	
	NPH _{m+b} +IAsp	74.8±13.1*	NR	0.7	NR		NR	NR	NR	NR	
Pieber <i>et al.,</i> 2007 ⁴⁸	IDet+IAsp	NR	NR	0.52	NR	p=0.193	NR	NR	NR	NR	NR
	lGlar+lAsp	NR	NR	0.96	NR		NR	NR	NR	NR	
Raskin <i>et al.,</i> 2000 ⁵⁹	lGlar+lLis	NR	NR	0.12	NR	p=0.034	NR	NR	NR	NR	NR
	NPH+ILis	NR	NR	0.54	NR		NR	NR	NR	NR	
Robertson <i>et al.</i> , 2007 ³⁰	IDet+IAsp	NR	NR	NR	NR	NR	BMI Z score: 0.15 (-2.0 to 1.7) [†]	BMI Z score: 0.08±0.02 [†]	NR	NR	p<0.001
	NPH+IAsp	NR	NR	NR	NR		BMI Z score: 0.16 (-2.6 to 1.7) [†]	BMI Z score: 0.26±0.03 [†]	NR	NR	

Study	Comparators	Weight at Baseline (kg)	Weight at Endpoint (kg)	Weight Change from Baseline (kg)	Weight p-value Endpoint vs. Baseline	Weight p- value between Treatments	BMI at Baseline	BMI at Endpoint	BMI Change from Baseline	BMI p-value Endpoint vs. Baseline	BMI p-value Between Treatments
Russell-Jones <i>et</i> <i>al.</i> , 2004 ⁴⁵	IDet+HI	76.5±12.3*	76.1±12.5*	NR	NR	p=0.024	NR	NR	NR	NR	NR
	NPH+HI	76.3±12.4*	76.5±12.6*	NR	NR		NR	NR	NR	NR	
Standl <i>et al.,</i> 2004 ⁴⁶	IDet+HI	76.9±11.8*	NR	-0.3	NR	p<0.001 at 6 months; p=0.002	NR	NR	NR	NR	NR
	NPH+HI	75.9±13.1*	NR	1.4	NR		NR	NR	NR	NR	
Vague <i>et al.,</i> 2003 ⁴⁴	IDet+IAsp	71.5±11.9*	70.9±0.28*	NR	NR	p=0.001	NR	NR	NR	NR	NR
	NPH+IAsp	71.2±11.5*	71.8±0.33*	NR	NR		NR	NR	NR	NR	

*mean±SD; [†]mean±SE. 12h=12 hour interval; BMI=body mass index; CI=confidence interval; DM=diabetes mellitus; HI=conventional human insulin; IAsp=insulin aspart; IDet=insulin detemir; IGIar=insulin glargine; ILis=insulin lispro; m+b=morning and bedtime; m+d=morning and dinner time; NPH=neutral protamine Hagedorn; NR=not reported; NS=not significant; RCTs=randomized controlled trials; vs.=versus.

APPENDIX 12B: STUDY-LEVEL BODY WEIGHT AND BMI DATA FROM RCTS IN TYPE 2 DM

Study	Comparators	Weight at Baseline (kg)	Weight at Endpoint (kg)	Weight Change from Baseline (kg)	Weight p-value Endpoint vs. Baseline	Weight p- value Between Treatments	BMI at Baseline (kg/m²)	BMI at Endpoint (kg/m²)	BMI Change from Baseline (kg/m²)	BMI p-value Endpoint vs. Baseline	BMI p-value Between Treatments
Fritsche <i>et</i> <i>al.</i> , 2003 ⁷⁸	IGlar (morning) +Glim	80.7±15.8*	NR	3.9±4.5*	NR	p≻0.2 among groups	NR	NR	NR	NR	NR
	lGlar (bedtime) +Glim	82.1±13.6*	NR	2.9±4.3*	NR		NR	NR	NR	NR	
	NPH (bedtime) +Glim	81.0±14.9*	NR	3.7±3.6*	NR		NR	NR	NR	NR	
Haak <i>et al.</i> , 2005 ⁶⁸	IDet+IAsp	85.7±14.9*	NR	1	NR	p=0.017	NR	NR	NR	NR	NR
	NPH+IAsp	89.3±17.5*	NR	1.8	NR		NR	NR	NR	NR	
Hermansen	IDet+OGLD	NR	83.6	1.2	NR	p<0.001	NR	NR	NR	NR	NR
<i>et al.</i> , 2006 ⁶⁹	NPH+OGLD	NR	85.1	2.8	NR		NR	NR	NR NR	NR	
HOE 901/2004	IGlar [30] +OAD	NR	NR	0.31	NR	NR	NR	NR	NR	NR	NR
Study Group,	IGlar [80] +OAD	NR	NR	0.64	NR		NR	NR	NR	NR	
2003-3	NPH+OAD	NR	NR	0.68	NR		NR	NR	NR	NR	
Massi	IGlar+OAD	NR	NR	2.01	NR	p=0.58	NR	NR	NR	NR	NR
Benedetti <i>et al.,</i> 2003 ⁸¹	NPH+OAD	NR	NR	1.88	NR		NR	NR	NR	NR	
Pan <i>et al.</i> ,	IGlar+Glim	NR	NR	NR	NR	NR	24.8±3.1*	NR	1.4	NR	Similar
2007 ⁷⁶	NPH+Glim	NR	NR	NR	NR		25.1±3.3*	NR	1.29	NR	

Study	Comparators	Weight at Baseline (kg)	Weight at Endpoint (kg)	Weight Change from Baseline (kg)	Weight p-value Endpoint vs. Baseline	Weight p- value Between Treatments	BMI at Baseline (kg/m²)	BMI at Endpoint (kg/m²)	BMI Change from Baseline (kg/m²)	BMI p-value Endpoint vs. Baseline	BMI p-value Between Treatments
Philis- Tsimikas <i>et</i> <i>al.</i> , 2006 ⁷⁰	[IDet (morning)+ OAD]	NR	NR	1.2	NR	NS; IDet (morning) vs. IDet	NR	NR	NR	NR	NR
	[IDet(evening) +OAD]	NR	NR	0.7	NR	(evening) or NPH p=0.005 IDet vs. NPH	NR	NR	NR	NR	
	(NPH+OAD)	NR	NR	1.6	NR		NR	NR	NR	NR	
Raskin <i>et</i> <i>al.</i> , 2006 ⁷²	(IDet+IAsp)	NR	NR	1.4	NR	p=0.0026	NR	NR	NR	NR	NR
	(IGlar+IAsp)	NR	NR	2.9	NR		NR	NR	NR	NR	
Riddle <i>et</i>	IGlar+OAD	NR	NR	3.0±0.2*	NR	p=NS	28.9±1.7 [†]	32.3±1.4 [†]	NR	p<0.01	p=NS
<i>al.</i> , 2003 ⁰²	NPH+OAD	NR	NR	2.8±0.2*	NR		31.4±1.2 [†]	32.8±1.2 [†]	NR	p=0.05	
Rosenstock	IGlar+HI	89.7±17.4*	90.0±17.8*	0.4	NR	p=0.0007	NR	NR	NR	NR	NR
<i>et al.</i> , 2001 ⁷⁴	NPH+HI	90.7±17.8*	92.1±18.3*	1.4	NR		NR	NR	NR	NR	
Rosenstock <i>et al.</i> ,	lGlar+ Sfu (max) +Metf	NR	NR	1.7±0.4	NR	p=0.02	NR	NR	NR	NR	NR
2006 ⁸⁸	Rosi+ Sfu (max) +Metf	NR	NR	3.0±0.4	NR		NR	NR	NR	NR	
Rosenstock	IDet	NR	NR	3	NR	p=0.012	NR	NR	NR	NR	NR
<i>et al.,</i> 2006 ⁷³	lGlar	NR	NR	3.9	NR		NR	NR	NR	NR	
Tajima <i>et</i> <i>al.</i> , 200691	IDet+OAD	NR	61.26±0.18 †	NR	NR	p=0.04	NR	NR	NR	NR	NR
	NPH+OAD	NR	61.64±0.18 †	NR	NR		NR	NR	NR	NR	
Triplitt <i>et</i>	lGlar	74.9±5.4 [†]	$77.9 \pm 5.2^{\dagger}$	NR	p=0.03	p=0.04	NR	NR	NR	NR	NR

Study	Comparators	Weight at Baseline (kg)	Weight at Endpoint (kg)	Weight Change from Baseline (kg)	Weight p-value Endpoint vs. Baseline	Weight p- value Between Treatments	BMI at Baseline (kg/m²)	BMI at Endpoint (kg/m²)	BMI Change from Baseline (kg/m²)	BMI p-value Endpoint vs. Baseline	BMI p-value Between Treatments
	rosiglitazone	88.3±4.1 [†]	91.9±5.5 [†]	NR	p=0.01		NR	NR	NR	NR	
Wang <i>et</i> <i>al.</i> , 2007 ⁷⁹	(IGlar+ glipizide)	NR	NR	1.47±1.04*	NR	p>0.05; NS	24.2±2.8 [†]	24.7±2.4 [†]	NR	NR	p=0.78
	(NPH+ glipizide)	NR	NR	1.20±1.17*	NR		24.6±2.5 [†]	24.9±2.3 [†]	NR	NR	
Yki-	IGlar+Metf	92.0±2.4 [†]	NR	2.6±0.6 [†]	NR	NS	NR	NR	NR	NR	NR
Järvinen <i>et</i> <i>al.</i> , 2006 ⁸⁰	NPH+Metf	94.4±2.6†	NR	3.5±0.7 [†]	NR		NR	NR	NR	NR	
Yki- Järvinen <i>et</i>	IGlar+OAD	NR	NR	2.57± 0.23 [†]	NR	Similar among	NR	NR	NR	NR	NR
<i>al.</i> , 2000 ⁸⁴	NPH+OAD	NR	NR	2.34± 0.23 [†]	NR	groups	NR	NR	NR	NR	

*mean±SD; [†]mean±SE. BMI=body mass index; Glim=glimprride; HI=human insulin; IAsp=insulin aspart; IDet=insulin detemir; IGIar=insulin glargine; Metf=metformin; NR=not reported; NS=not significant; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic drug; OGLD=oral glucose-lowering drugs; RCTs=randomized controlled trials; Rosi=rosiglitazone; Sfu=sulfonylurea; vs.=versus.

APPENDIX 13A: ADVERSE EVENTS DATA (EXCLUDING HYPOGLYCEMIA) FOR RCTS IN TYPE 1 DM

Ashwell et al., 2006 ⁶⁴ IGlar+ILis: 2 patients (3.8%) with severe AEs The AE profile was similar in the two groups. Of these AEs, two events were considered by invetgator to be treatment-related. IGlar+ILis: NR IGlar+ILis: NR IGlar+ILis: NR Abstract] NPH+HLis: NR NR Chase et al., 2006 ⁶³ IGlar+ILis: NR NR Abstract] IGlar+ILis: NR NR Davies et al., 2006 ⁵³ IGlar+ILis: NR Possibly related AEs were comparable in both groups (NS) Ibstract] NPH (or lente) +ILis: NR NR Davies et al., 2005 ⁵⁰ IGlar+ILis: NR IDeceuv et al., 2005 ⁵⁰ Ibstract] NPH (or lente) +ILis: NR NR De Lecuw et al., 2005 ⁶⁰ IDeceuv et al., 2005 ⁶⁰ IDeceuv et al., 2005 ⁶⁰ Ibstract] NPH+IAsp: NR NR De Lecuw et al., 2005 ⁶⁰ IDeceuv et al., 2005 ⁶⁰ IDeceuv et al., 2005 ⁶⁰ Ibstract] NPH+is for months and 69.7% in the 2 nd 6 IDeceuv et al., 2005 ⁶⁰ Iclar: 277 events in 57 patients NPH events in 56 patients NPH event sin 36 for any 30 patients in the 2 nd 6 Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients Most common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 5.4%), headache	Study	Number of Adverse Events in Each Arm	Description of Adverse Events
NPH+HI: 4 patients (7,7%) with severe AEs IGIar+ILis: one treatment-related AE was accidental insulin overdose Bolii et al., 2006 ⁶⁹ IGIar+ILis: NR NR Abstract] IGIar+ILis: NR NR Chase et al., 2006 ⁵⁹ IGIar+ILis: NR Possibly related AEs were comparable in both groups (NS) [Abstract] NPH (or lente) +ILis: NR Possibly related AEs were comparable in both groups (NS) [Abstract] IGIar+ILis: NR NR Davies et al., 2005 ⁶⁹ IGIar+IAsp: NR NR De Leeuw et al., 2005 ⁶⁹ ICIar+IAsp: NR IDet: 72,7% of patients in the first 6 months and 60.2% of patients in the 2 nd 6 months: in the 2 nd 6 months: of severe AEs IDet: NS complaints (including migraine) were most frequent. Other AEs included retinal edema and macular degeneration, 3 moderate episodes of hyperglycemia, 2 patients with ketosis, and 1.9% of patients reported injection site reactions. Fulcher et al., 2005 ⁶⁰ IGIar: 277 events in 57 patients Most common AEs were upper respiratory tract infections (IGIar: 72,%; NPH: 54%), head ache (IGIar: 93, NPH: 54%), head ache (IGIar: 93, NPH: 54%), head ache (IGIar: 92, NPH: 54%), head ache (IGIar: 92, NPH: 54%), head ache (IGIar: 92, NPH: 54%), infections (IGIar: 72, NPH: 54%), head ache (IGIar: 93, NPH: 54%), head ache (IGIar: 94, N	Ashwell <i>et al.</i> , 2006 ⁶⁴	IGlar+ILis: 2 patients (3.8%) with severe AEs	The AE profile was similar in the two groups. Of thses AEs, two events were considered by invetgator to be treatment-related.
IGlar+ILis: one treatment-related AE was accidental insulin overdose Bolli et al., 2006 ⁶¹ IGlar+ILis: NR [Abstract] IGlar+ILis: NR NPH+ILis: NR NR Chase et al., 2006 ³³ IGlar+ILis: NR [Abstract] IGlar+ILis: NR NPH (or lente) +ILis: NR Possibly related AEs were comparable in both groups (NS) Davies et al., 2005 ⁵⁰ IGlar+IAsp: NR [Abstract] NPH (or lente) +ILis: NR De Leeuw et al., 2005 ⁵⁰ IGlar+IAsp: NR [Abstract] IDet: 72.7% of patients in the first 6 months and 60.2% of patients in the 2 nd 6 months experienced AEs; 12 severe AEs NPH: 76.8% in first 6 months and 69.7% in the 2 nd 6 months, 5 severe AEs IDet: CNS complaints (including migraine) were most frequent. Other AEs included retinal edema and macular degeneration, 3 moderate episodes of hyperglycemia, 2 patients with ketosis, and 1.9% of patients reported injection site reactions. Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 57 patients Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients NPH: 241 events in 56 patients Most common AEs were upper respiratory tract infections (IClar: 7.2%; NPH: 0.2%), Infections (IClar: 7.2%; NPH: 0.2%), Infections (IClar: 7.2%; NPH: 0.2%), Injections (IClar: 7.2%; NPH: 0.2%), Injections (IClar: 7.2%;		NPH+HI: 4 patients (7.7%) with severe AEs	
Image: constraint of the second se			IGIar+ILis: one treatment-related AE was accidental insulin overdose
Boll et al., 2005 ⁶³ IGlar+ILis: NR NR [Abstract] NPH+ILis: NR Possibly related AEs were comparable in both groups (NS) Chase et al., 2005 ⁶³ IGlar+ILis: NR Possibly related AEs were comparable in both groups (NS) [Abstract] NPH (or lente) +ILis: NR Possibly related AEs were comparable in both groups (NS) Davies et al., 2005 ⁶⁰ IGlar+IAsp: NR NR De Leeuw et al., 2005 ⁴⁰ IDet: 72,7% of patients in the first 6 months and 60.2% of patients in the 2 nd 6 months experienced AEs; 12 severe AEs IDet: CNS complaints (including migraine) were most frequent. Other AEs included retinal edema and macular degeneration, 3 moderate episodes of hyperglycemia, 2 patients with ketosis, and 1.9% of patients reported injection site reactions. Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 57 patients Most common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 4.2%), nhintis (IGlar: 7.2%; NPH: 5.4%), headache (IGlar: 9.8%; NPH: 4.2%), which is 156 patients in 56 patients in 56 patients Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients Most common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 6.2%), rhinitis (IGlar: 7.2%; NPH: 5.4%), headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IClar: 4.3%; NPH: 5.4%), headache (IGlar: 9.8%; NPH: 4.2%), of AEs were considered severe and fewer than 10% were considered related to study medication.			NPH+HI: one treatment-related AE was urinary tract infection
[Abstract] NPH+illis: NR Chase et al., 2005 ³⁰ [Glar+ILis: NR [Abstract] NPH (or lente) +ILis: NR Davies et al., 2005 ⁵⁰ [Glar+IAsp: NR [Abstract] IGlar+IAsp: NR De Leeuw et al., 2005 ⁴⁰ IDet: 72.7% of patients in the first 6 months and 60.2% of patients in the 2 nd 6 months experienced AEs; 12 sever AEs NPH: 76.8% in first 6 months and 69.7% in the 2 nd 6 months; 6 severe AEs IDet: 72.7% of patients in 57 patients Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 57 patients NPH: 241 events in 56 patients Most common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 5.4%), hnitits (IGlar: 7.2%; NPH: 5.4%), headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 4.3%; NPH: 7 events in 56 patients Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients NPH: 241 events in 56 patients Most common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 5.4%), headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 4.3%; NPH: 9.8%). Injection site reactions. NPH: 241 events in 56 patients Postients were considered severe and fewer than 10% were considered related to study medication.	Bolli <i>et al.</i> , 2006 ⁶³	IGlar+ILis: NR	NR
Fullcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients	[Abstract]		
Chase et al., 2006 ³³ IGIaT+LIS: NR Possibly related AEs were comparable in both groups (NS) [Abstract] NPH (or lente) +ILis: NR NR Davies et al., 2005 ⁵⁰ IGIaT+IASP: NR NR [Abstract] NPH+IASP: NR NR De Leeuw et al., 2005 ⁴⁰ IDet: 72.7% of patients in the first 6 months and 60.2% of patients in the 2 nd 6 months experienced AEs; 12 sever AEs IDet: CNS complaints (including migraine) were most frequent. Other AEs included retinal edema and macular degeneration, 3 moderate episodes of hyperglycemia, 2 patients with ketosis, and 1.9% of patients reported injection site reactions. Fulcher et al., 2005 ⁶⁰ IGIar: 277 events in 57 patients Nest common AEs were upper respiratory tract infections (IGIar: 7.2%; NPH: 5.4%), headache (IGIar: 9.8%; NPH: 4.2%), and diarrhea (IGIar: 7.2%; NPH: 5.4%), headache (IGIar: 9.8%; NPH: 4.2%), and diarrhea (IGIar: 7.2%; NPH: 7 events in 56 patients Fulcher et al., 2005 ⁶⁰ IGIar: 277 events in 56 patients Most common AEs were upper respiratory tract infections (IGIar: 7.2%; NPH: 5.4%), headache (IGIar: 9.8%; NPH: 4.2%), and diarrhea (IGIar: 7.2%; NPH: 5.4%), headache (IGIar: 9.8%; NPH: 4.2%), and diarrhea (IGIar: 7.2%; NPH: 7 events in 56 patients			
Industration NPH (or lente) +ILis: NR NPH (or lente) +ILis: NR Davies et al., 2005 ⁵⁰ IGlar+IAsp: NR NR De Leeuw et al., 2005 ⁴⁰ IDet: 72.7% of patients in the first 6 months and 60.2% of patients in the 2 nd 6 months experienced AEs; 12 sever AEs IDet: CNS complaints (including migraine) were most frequent. Other AEs included retinal edema and macular degeneration, 3 moderate episodes of hyperglycemia, 2 patients with ketosis, and 1.9% of patients reported injection site reactions. Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 57 patients Most common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 6.2%), rhinitis (IGlar: 7.2%; NPH: 9.4%), headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 7.2%; NPH: 0.8%). Injections were similar (IGlar: 9.4%; NPH: 0.8%). Injections were similar (IGlar: 9.4%; NPH: 0.8%). Injections ite reactions. Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients Most common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 1.2%), infections (IGlar: 7.2%; NPH: 0.8%). Injections ite reactions. Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients Most common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 0.8%). Injections (IGlar: 7.2%; NPH: 0.8%). Injections ite reactions. Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 56 patients Most common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 0.8%). Injections (IGlar: 7.2%; NPH: 0.8%). Injections (IGlar: 9.8%; IPH: 0.8%). Injections were similar (IGlar: 9.8%; IPH: 0.8%). Injections were similar (IGlar: 9.8%; IPH: 0.8%). Injections ing	Chase <i>et al.</i> , 2006 ³³	IGIar+ILis: NR	Possibly related AEs were comparable in both groups (NS)
Davies et al., 2005 ⁵⁰ IGIar+IAsp: NR NR [Abstract] IGIar+IAsp: NR NR De Leeuw et al., 2005 ⁴⁰ IDet: 72.7% of patients in the first 6 months and 60.2% of patients in the 2 nd 6 months experienced AEs; 12 severe AEs IDet: CNS complaints (including migraine) were most frequent. Other AEs included retinal edema and macular degeneration, 3 moderate episodes of hyperglycemia, 2 patients with ketosis, and 1.9% of patients reported injection site reactions. Fulcher et al., 2005 ⁶⁰ IGIar: 277 events in 57 patients Most common AEs were upper respiratory tract infections (IGIar: 7.2%; NPH: 5.4%), headache (IGIar: 7.2%; NPH: 6.2%), rhinitis (IGIar: 7.2%; NPH: 0.3%). Injection site reactions were similar (IGIar: 9 events in 5 patients; NPH: 7 events in 7 patients). Fulcher et al., 2005 ⁶⁰ IGIar: 277 events in 56 patients Most common AEs were upper respiratory tract infections (IGIar: 7.2%; NPH: 0.3%). Injections ite reactions. Fulcher et al., 2005 ⁶⁰ IGIar: 277 events in 56 patients Most common AEs were upper respiratory tract infections (IGIar: 7.2%; NPH: 1.2%), infections (IGIar: 7.2%; NPH: 0.3%). Injection site reactions. Fulcher et al., 2005 ⁶⁰ IGIar: 277 events in 56 patients Most common AEs were upper respiratory tract infections (IGIar: 7.2%; NPH: 0.3%). Injection site reactions. Fulcher et al., 2005 ⁶⁰ IGIar: 277 events in 56 patients Fulcher et al. 2005 ⁶⁰ Fulcher et al., 2005 ⁶⁰ IGIar: 277 events in 56 patients Fulcher et al. 2005 ⁶⁰	[ADStract]	NPH (or lente) +11 is: NP	
Data TAS, 2003*Inditities, NRDe Leeuw et al., 200540IDet: 72.7% of patients in the first 6 months and 60.2% of patients in the 2nd 6 months experienced AEs; 12 sever AEsIDet: CNS complaints (including migraine) were most frequent. Other AEs included retinal edema and macular degeneration, 3 moderate episodes of hyperglycemia, 2 patients with ketosis, and 1.9% of patients reported injection site reactions.Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 57 patients NPH: 241 events in 56 patientsNost common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 1.2%), infections (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 4.3%; NPH: 0.8%). Injection site reactions were similar (IGlar: 9.9%; NPH: 2.4%), headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 4.3%; NPH: 7 events in 7 patients). Fewer than 5% of AEs were considered severe and fewer than 10% were considered related to study medication.	Davies $et al. 2005^{\circ}$		ND
ProductionNPH+IAsp: NRDe Leeuw et al., 200540IDet: 72.7% of patients in the first 6 months and 60.2% of patients in the 2 nd 6 months experienced AEs; 12 severe AEsIDet: CNS complaints (including migraine) were most frequent. Other AEs included retinal edema and macular degeneration, 3 moderate episodes of hyperglycemia, 2 patients with ketosis, and 1.9% of patients reported injection site reactions.NPH: 76.8% in first 6 months and 69.7% in the 2 nd 6 months; 6 severe AEsNPH: vision disturbances were most frequent. Other AEs included retinal disorder, 2 patients with ketosis, and 1.0% of patients reported injection site reactions.Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 57 patients NPH: 241 events in 56 patientsMost common AEs were upper respiratory tract infections (IGIar: 7.2%; NPH: 11.2%), infections (IGIar: 7.2%; NPH: 6.2%), rhinitis (IGIar: 4.3%; NPH: 0.8%). Injection site reactions.NPH: 241 events in 56 patientsHost common AEs were considered severe and fewer than 10% were considered related to study medication.	[Abstract]		
De Leeuw et al., 200540IDet: 72.7% of patients in the first 6 months and 60.2% of patients in the 2 nd 6 months experienced AEs; 12 severe AEsIDet: CNS complaints (including migraine) were most frequent. Other AEs included retinal edema and macular degeneration, 3 moderate episodes of hyperglycemia, 2 patients with ketosis, and 1.9% of patients reported injection site reactions.NPH: 76.8% in first 6 months and 69.7% in the 2 nd 6 months; 6 severe AEsNPH: vision disturbances were most frequent. Other AEs included retinal disorder, 2 patients with ketosis, and 1.9% of patients reported injection site reactions.Fulcher et al., 2005 ⁶⁰ IGIar: 277 events in 57 patientsMost common AEs were upper respiratory tract infections (IGIar: 7.2%; NPH: 1.2%), infections (IGIar: 7.2%; NPH: 5.4%), headache (IGIar: 9.8%; NPH: 4.2%), and diarrhea (IGIar: 4.3%; NPH: 0.8%). Injection site reactions were similar (IGIar: 9 events in 5 patients; NPH: 7 events in 7 patients). Fewer than 5% of AEs were considered severe and fewer than 10% were considered related to study medication.	[/ lostidet]	NPH+IAsp: NR	
patients in the 2nd 6 months experienced AEs; 12 sever AEsincluded retinal edema and macular degeneration, 3 moderate episodes of hyperglycemia, 2 patients with ketosis, and 1.9% of patients reported injection site reactions.NPH: 76.8% in first 6 months and 69.7% in the 2nd 6 months; 6 severe AEsNPH: vision disturbances were most frequent. Other AEs included retinal disorder, 2 patients with ketosis, and 1.0% of patients reported injection site reactions.Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 57 patientsMost common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 11.2%), infections (IGlar: 7.2%; NPH: 6.2%), rhinitis (IGlar: 7.2%; NPH: 0.8%). Injection site reactions were similar (IGlar: 9 events in 5 patients; NPH: 7 events in 7 patients). Fewer than 5% of AEs were considered severe and fewer than 10% were considered related to study medication.	De Leeuw <i>et al.</i> , 2005 ⁴⁰	IDet: 72.7% of patients in the first 6 months and 60.2% of	IDet: CNS complaints (including migraine) were most frequent. Other AEs
AEshyperglycemia, 2 patients with ketosis, and 1.9% of patients reported injection site reactions.NPH: 76.8% in first 6 months and 69.7% in the 2 nd 6 months; 6 severe AEsNPH: vision disturbances were most frequent. Other AEs included retinal disorder, 2 patients with ketosis, and 1.0% of patients reported injection site reactions.Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 57 patientsMost common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 11.2%), infections (IGlar: 7.2%; NPH: 6.2%), rhinitis (IGlar: 7.2%; NPH: 5.4%), headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 4.3%; NPH: 0.8%). Injection site reactions were similar (IGlar: 9 events in 5 patients; NPH: 7 events in 7 patients). Fewer than 5% of AEs were considered severe and fewer than 10% were considered related to study medication.		patients in the 2 nd 6 months experienced AEs; 12 severe	included retinal edema and macular degeneration, 3 moderate episodes of
NPH: 76.8% in first 6 months and 69.7% in the 2nd 6 months; 6 severe AEsNPH: vision disturbances were most frequent. Other AEs included retinal disorder, 2 patients with ketosis, and 1.0 % of patients reported injection site reactions.Fulcher et al., 2005 ⁶⁰ IGlar: 277 events in 57 patientsMost common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 11.2%), infections (IGlar: 7.2%; NPH: 6.2%), rhinitis (IGlar: 7.2%; NPH: 5.4%), headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 4.3%; NPH: 0.8%). Injection site reactions were similar (IGlar: 9 events in 5 patients; NPH: 7 events in 7 patients). Fewer than 5% of AEs were considered severe and fewer than 10% were considered related to study medication.		AEs	hyperglycemia, 2 patients with ketosis, and 1.9% of patients reported
Fulcher et al., 2005IGlar: 277 events in 57 patientsNPH: vision disturbances were most frequent. Other AEs included retinal disorder, 2 patients with ketosis, and 1.0 % of patients reported injection site reactions.Fulcher et al., 2005IGlar: 277 events in 57 patientsMost common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 11.2%), infections (IGlar: 7.2%; NPH: 6.2%), rhinitis (IGlar: 7.2%; NPH: 5.4%), headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 4.3%; NPH: 0.8%). Injection site reactions were similar (IGlar: 9 events in 5 patients; NPH: 7 events in 7 patients). Fewer than 5% of AEs were considered severe and fewer than 10% were considered related to study medication.		NPH: 76.8% in first 6 months and 60.7% in the a^{nd} 6	Injection site reactions.
Fulcher et al., 2005IGlar: 277 events in 57 patientsMost common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 11.2%), infections (IGlar: 7.2%; NPH: 6.2%), rhinitis (IGlar: 7.2%; NPH: 5.4%), headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 4.3%; NPH: 0.8%). Injection site reactions were similar (IGlar: 9 events in 5 patients; NPH: 7 events in 7 patients). Fewer than 5% of AEs were considered severe and fewer than 10% were considered related to study medication.		months: 6 severe AFs	NPH·vision disturbances were most frequent. Other AFs included retinal
Fulcher et al., 200560IGlar: 277 events in 57 patientsMost common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 11.2%), infections (IGlar: 7.2%; NPH: 6.2%), rhinitis (IGlar: 7.2%; NPH: 5.4%), headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 4.3%; NPH: 0.8%). Injection site reactions were similar (IGlar: 9 events in 5 patients; NPH: 7 events in 7 patients). Fewer than 5% of AEs were considered severe and fewer than 10% were considered related to study medication.			disorder, 2 patients with ketosis, and 1.0 % of patients reported injection site
Fulcher et al., 2005IGlar: 277 events in 57 patientsMost common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 11.2%), infections (IGlar: 7.2%; NPH: 6.2%), rhinitis (IGlar: 7.2%; NPH: 5.4%), headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 4.3%; NPH: 0.8%). Injection site reactions were similar (IGlar: 9 events in 5 patients; NPH: 7 events in 7 patients).Fulcher et al., 2005IGlar: 277 events in 56 patientsMost common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH: 6.2%), rhinitis (IGlar: 7.2%; NPH: 5.4%), headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 4.3%; NPH: 0.8%). Injection site reactions were similar (IGlar: 9 events in 5 patients; NPH: 7 events in 7 patients). Fewer than 5% of AEs were considered severe and fewer than 10% were considered related to study medication.			reactions.
NPH: 241 events in 56 patients11.2%), infections (IGIar: 7.2%; NPH: 6.2%), rhinitis (IGIar: 7.2%; NPH: 5.4%), headache (IGIar: 9.8%; NPH: 4.2%), and diarrhea (IGIar: 4.3%; NPH: 0.8%). Injection site reactions were similar (IGIar: 9 events in 5 patients; NPH: 7 events in 7 patients). Fewer than 5% of AEs were considered severe and fewer than 10% were considered related to study medication.	Fulcher <i>et al.</i> , 2005 ⁶⁰	IGlar: 277 events in 57 patients	Most common AEs were upper respiratory tract infections (IGlar: 7.2%; NPH:
NPH: 241 events in 56 patients headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 4.3%; NPH: 0.8%). Injection site reactions were similar (IGlar: 9 events in 5 patients; NPH: 7 events in 7 patients). events in 7 patients). Fewer than 5% of AEs were considered severe and fewer than 10% were considered related to study medication. fewer than 10% were considered related to study medication.			11.2%), infections (IGlar: 7.2%; NPH: 6.2%), rhinitis (IGlar: 7.2%; NPH: 5.4%),
Injection site reactions were similar (IGlar: 9 events in 5 patients; NPH: 7 events in 7 patients). Fewer than 5% of AEs were considered severe and fewer than 10% were considered related to study medication.		NPH: 241 events in 56 patients	headache (IGlar: 9.8%; NPH: 4.2%), and diarrhea (IGlar: 4.3%; NPH: 0.8%).
events in 7 patients). Fewer than 5% of AEs were considered severe and fewer than 10% were considered related to study medication.			Injection site reactions were similar (IGIar: 9 events in 5 patients; NPH: 7
considered related to study medication.			events in 7 patients).
			rewer than 5% of AEs were considered severe and tewer than 10% were
Corrant at 100853 NP	Cara et al 100853	ND	
[Abstract]	[Abstract]		

Study	Number of Adverse Events in Each Arm	Description of Adverse Events
Hermansen <i>et al.</i> , 2004 ⁴⁹	IDet+IAsp: 141 patients (47.3%) experienced at least one AE, 12 patients with serious AEs	AEs were equally distributed between treatments. IDet+IAsp: 5 patients withdrew due to AEs; 3 events (hypoglycemia*, allergic
	NPH+HI: 139 patients (46.8%) experienced at least one AE, 7 patients with severe AEs	reaction, and injection site reaction) were considered to be related to the trial products.
		NPH+HI: 1 pt withdrew due to AEs
Hermansen <i>et al.</i> , 2001 ⁴³	Approximately 30% of patients had AEs during either treatment period.	NR
Hershon <i>et al.</i> , 2004 ⁵⁴ (subgroup analysis of Ratiner ⁶⁶)	IDet: 84.6% of patients experienced at least one treatment-related AE: 84.6%; 13.8% of patients experienced at least one serious AE	Increased body weight and injection site pain were the only AEs specified.
	NPH: 85.9% of patients experienced at least one treatment-related AE; 13.1% of patients experienced at least one serious AE	
Home <i>et al.</i> , 2005 ⁵⁵	IGlar: 37/292 patients (13%) experienced AEs possibly related to study medication; 9% classified as serious	IGlar: 8 patients (3%) had injection site mass; 3 patients (1%) had injection site reaction
	NPH: 39/293 patients (13%) experienced AEs possibly related to study medication; 10% classified as serious	NPH: 9 patients (3%) had injection site mass; 6 patients (2%) had injection site reaction
		Similar numbers of patients for each group developed a retinopathy severity level >61(ETDRS), clinically significant macular edema and/or a 3-step progression on the ETDRS retinopathy scale.
Home <i>et al.</i> , 2004 ⁴¹	IDet: serious AEs reported for 14 patients (5%)	AEs not considered to be related to study medication
	NPH: serious AEs reported for 4 patients (3%)	
Kawamura <i>et al.</i> , 2005 ³¹ [Abstract]	NR	NR
Kolendorf <i>et al.</i> , 2006 ³⁹	IDet+IAsp: NR	Overall AE profile was similar between two groups and most events were mild and considered unrelated to trial products. 3 persons withdrew due to
	NPH+IAsp: 1 patient died from a myocardial infarction	AEs.
Kudva <i>et al.</i> , 2005 ⁶⁵	NR	NR

Study	Number of Adverse Events in Each Arm	Description of Adverse Events
Mianowska <i>et al.</i> , 2006 ³⁵	IGlar+(ILis or HI): NR	No ketoacidosis occurred.
[Abstract]		
M arma b c c c c c c c c c c		
Murphy <i>et al.</i> , 2003 ⁵⁵	with potential causally related AE	Most of these events were mild and unrelated to insulin therapy.
	, , , , , , , , , , , , , , , , , , ,	IGlar+ILis: The only potential causally related adverse event was transient
		pain in the injection site which was mild and did not necessitate
	NPH+HI: 29 treatment-emergent AEs in 15 patients; 1 pt	discontinuation of the study insulin.
	with serious AE	NDH I HI. One SAE was that one of required a 15 hour bospital admission
		during an episode of gastroenteritis.
Pesic <i>et al.</i> , 2006 ⁵¹	IGlar+IAsp: NR	NR
[Abstract]		
	NPH (q.d.) +IAsp: NR	
	NPH (b.i.d.) +IAsp: NR	
Pieber <i>et al.</i> , 2007 ⁴⁸	IDet+IAsp: 8.7% of patients reported SAEs	The overall frequency and severity of treatment-emergent adverse events
	······································	was similar with twice-daily insulin detemir and once-daily insulin
	IGlar+IAsp: 6.9% of patients reported SAEs	glargine.With the exception of 1 patient suffering from accidental injury and
		bone fracture, and one patient suffering from vomiting and cholelithiasis, all
		appeared unrelated to diabetes without any distinct pattern. A patients in
		each group had clinically significant changes in funduscopy/ fundus
		photography during the trial.
		IDet+IAsp. 1 of SAFs (hypoglycemic coma*) was probably or possibly related to
		treatment. 3 patients withdrew due to AEs (allergic reaction in the eyes,
		protruding intervertebral disc, and lumbar disc lesion).
		IGIar+IAsp: 4 of SAEs (proliferative retinopathy, hypoglycemic coma*, two
		incidences of hypoglycemia*) were probably or possibly related to treatment.
		1 patient withdrew after development of proliferative retinopathy.
Pieber <i>et al.</i> , 2005 ⁴²	Approximately 63% of all patients reported AEs	IDet: Only 1 serious AE considered to be related to study medication (1
	Det: o patients (2.2%) with serious AEs	transient ischemic attack); 4 patients experienced injection site reactions
	Det. 9 patients (3.5%) with schous ALS	
	NPH: 2 patients (1.6%) with serious AEs	

Study	Number of Adverse Events in Each Arm	Description of Adverse Events
Pieber <i>et al.</i> , 2000 ⁵²	IGlar (HOE 901-30): 3 (3%) of patients with injection site reactions	Only injection site reactions reported
	IGlar (HOE 901-80): 10 (9%) of patients with injection site reactions	
	NPH: 3 (3%) of patients with injection site reactions	
Porcellati <i>et al.</i> , 2004 ⁶¹	NR	NR
Raskin <i>et al.,</i> 2000 ⁵⁹	IGlar: Treatment-emergent AEs regardless of relationship to study medication occurred in 250/310 patients (80.6%) NPH: Treatment-emergent AEs regardless of relationship to study medication occurred in 236/309 patients (71.4%) in NPH group	Most common AEs were injection site events (occurring in 6.1% of IGlar patients and 0.3% NPH patients). Other AEs included headache and retinal events and increase in body weight. One NPH patient withdrew due to cancer of the pancreas.
Ratner <i>et al.,</i> 2000 ⁵⁶	IGlar: 84.5% NPH: 86.7%	Only reported AEs were injection site reactions (15.2% in IGlar vs. 10.4% in NPH) and one fall in each group (due to hypoglycemia) resulting in serious events. Frequency and types of AEs similar in both groups.
Robertson <i>et al.,</i> 2007 ³⁰	IDet+IAsp: 837 AEs in 202 children (87%) NPH+IAsp: 436 AEs in 104 children (90%)	AEs were equally distributed between two treatments. The most frequest AEs in both groups were upper respiratory tract infection, headache, pharygitis, gastroenteritis, and influenza-like symptoms. AE type was similar in the two groups apart from injection site reactions (erythema, local pain, and swelling), which were more frequent with IDet. All injection site reactions were mild or moderate and reversible. IDet+IAsp: 11 events of injection site reactions in 8 (3.4%) children; 4 events of ketoacidosis for 4 children (1.7%) NPH+IAsp: 3 events of injection site reactions in 2 children (1.7%); 2 events of ketoacidosis for 3 children (1.7%)
Rosenstock <i>et al.</i> , 2000 ⁵⁷	NR	Most frequent AEs considered related to study medication were injection site
Rossetti <i>et al.</i> , 2003 ⁶²	NR	NR
Russell-Jones <i>et al.</i> , 2004 ⁴⁵	Less than 2% of patients reported serious AEs with probable/possible relation to treatment.	NR except for one episode of severe hyperglycemia in NPH group.

Study	Number of Adverse Events in Each Arm	Description of Adverse Events
Schober <i>et al.</i> , 2002 ³²	IGlar: 16 (9.2%) injection site reactions; 10 (5.7%) serious AEs; 4 (2.3%) systemic allergic reactions. NPH: 15 (8.6%) injection site reactions; 24 (13.7%) serious AEs; 2 (1.1%) systemic allergic reactions.	None of the allergic reactions was considered related to the study treatments. Other AEs reported were infection, upper respiratory tract infection, pharyngitis, rhinitis, and gastroenteritis. Injection site reactions were the only AEs considered related to treatment. Serious AEs included hyperglycemia and ketoacidosis.
Standl <i>et al.,</i> 2004 ⁴⁶	 IDet: 3 episodes of hyperglycemia due to missed doses; 4.5% of IDet patients had injection site reactions; 11.0% of patients experienced vision disorders; 5.2% retinal disorders. NPH: 0.7% of NPH patients had injection site reactions; 2 patients had abnormal fundoscopies after 12 months; 11.2% of patients experienced vision disorders; 8.2% retinal disorders. 	AEs included hyperglycemia (due to missed doses), injection site disorders, abnormal fundoscopies, vision disorders, and retinal disorders.
Vague <i>et al.</i> , 2003 ⁴⁴	Approximately 70% of patients in both groups had one or more AE IDet: 3 injection site reactions; one potentially allergic reaction to IDet NPH: One injection site reaction	Most common AEs were headache, upper respiratory tract infection, and rhinitis. Others included an allergic reaction to IDet and injection site reactions in both treatment groups. One patient in the IDet group withdrew due to headache, vomiting, and malaise (not considered to be treatment- related). One patient withdrew due to uterine carcinoma (not considered to be treatment-related).
White <i>et al.</i> , 2006 ³⁴ [Abstract]	IGlar+ILis: NR NPH (or lente) +ILis: NR	NR
Witthaus <i>et al.</i> , 2001 ⁵⁸	NR	NR

* Hypoglycemia can not have been separated from other AEs. b.i.d.=twice a day; BMI=body mass index; CNS=central nervous system; DM=diabetes mellitus; Glim=glimepiride; HI=conventional human insulin; IAsp=insulin aspart; IDet=insulin detemir; IGIar=insulin glargine; ILis=insulin lispro; Metf=metformin; NPH=neutral protamine Hagedorn; NR=not reported; NS=not significant; OAD=oral antidiabetic agent; OGLD=oral glucose-lowering drugs; q.d.=every day; RCTs=randomized controlled trials; SAE=serious adverse event; Sfu=sulfonylurea.

APPENDIX 13B: ADVERSE EVENTS DATA (EXCLUDING HYPOGLYCEMIA) FOR RCTS IN TYPE 2 DM

Study	Number of Adverse Events in Each Arm	Description of Adverse Events
Eliaschewitz <i>et al.,</i> 2006 ⁷⁷	IGlar+Glim: 137 patients (59.3%) reported AEs 10 patients (4.3%) reported SAEs, 39 patients (16.9%) with treatment-related events NPH+Glim: 150 patients (60%) reported AEs; 10 patients (4.0%) reported SAEs; 31 patients (12.4%) with treatment- related events	Treatment-related adverse events were categorized as possibly related by the investigator. The most common possibly related AEs were injection site reactions, which were seen in: IGlar+Glim: 19 patients (8.2%) NPH+Glim: 17 patients (6.8%)
Fonseca <i>et al.</i> , 2004 ⁷⁵ [Subgroup analysis of Rosenstock <i>et</i> <i>al</i> . ⁷⁴]	IGIar: 43/52 patients (83%) experienced at least one AE, 7 (13.5%) of these possibly treatment-related; 5/52 patients (10%) experienced a serious AE NPH: 41/48 patients (85%) experienced at least one AE, 3 (6.3%) of these possibly treatment-related; 8/48 patients (17%) experienced a serious AE	Most common AEs included retinal vascular disorders, upper respiratory tract infections, neuropathy, peripheral edema, and injection site hemorrhage. Most common serious AEs were cerebrovascular accidents, coronary artery disorders, myocardial infarct, hypertension, retinal vascular disorder, retinal hemorrhage, and skin carcinoma, of which only injection site hemorrhage was considered treatment- related. Body weight increased in both groups.
Fritsche <i>et al.,</i> 2003 ⁷⁸	Bedtime IGlar: 414 (36 considered possibly treatment-related) Morning IGlar: 403 (45 considered possibly treatment-related) NPH: 423 (55 considered possibly treatment-related)	Only AEs specified were weight gain.
Haak <i>et al.,</i> 2005 ⁶⁸	NR	Most common AEs were gastro-intestinal disorders in IDet patients; skin and appendage disorders in NPH patients. Weight gain was experienced by both groups.
Hermansen <i>et al.,</i> 2006 ⁶⁹	IDet+OAD: 3 patients withdrew due to AEs; 1 case was considered related to trial product (mild allergy) NPH+OAD: 4 patients withdrew due to AEs; 1 case was considered related to trial product (mild injection site reaction)	Both insulins were well tolerated with no major safety issues arising. The adverse event profiles of the two insulins were similar, with most adverse events mild or moderate and considered unlikely related to trial products. The only between-treatment difference with a probable relation to trial medication concerned injection site reports, which were seen in: IDet+OAD: 14 events in 13 patients (9 patients suffered injection-site reactions, 2 reports of pain, and 2 reports of hematoma) NPH+OAD: 6 events in 6 patients (6 patients suffered injection-site reactions)
HOE 901/2004 Study Group, 2003 ⁸³	IGlar 30: 3/64 patients (4.7%) experienced AEs possibly related to treatment IGlar 80: 3/72 patients (4.2%) experienced AEs possibly related to treatment NPH: 2/68 patients (2.9%) experienced AEs possibly related to treatment	IGlar 30: tachycardia, tongue edema, and injection site reaction. One serious adverse event (myocardial infarction) was not considered to be treatment-related. IGlar 80: paraesthesia, dyspepsia, and increased appetite NPH: headache and nausea with asthenia One patient in each group experienced an injection site reaction. Mean body weight increased in all groups.

Study	Number of Adverse Events in Each Arm	Description of Adverse Events
Massi Benedetti <i>et</i> <i>al.</i> , 2003 ⁸¹	IGlar: 185 patients (65%) reported at least one AE; 5.5% possibly treatment-related NPH: 193 (69%) reported at least one AE; 7.5% possibly treatment-related	Most common AEs were infection, upper respiratory tract infection, bronchitis, back pain, and injection site reactions. Other AEs included increased insulin antibodies and development of E. coli antibodies.
Meneghini <i>et al.,</i> 2006 ⁸⁷ [Abstract]	IGlar (with Metf or Sfu): NR Pio (with Metf or Sfu): NR	NR
Meneghini <i>et al.,</i> 2005 ⁸⁵ [Abstract]	NR	IGlar: Most common AEs 1 edema; 6 weight increase Pio: Most common AEs 13 edema; 9 weight increase; 5 headache
Oster <i>et al.</i> , 2006 ⁸⁶ [Abstract]	IGlar (with Metf or Sfu): NR Pio (with Metf or Sfu): NR	IGlar was associated with a lower overall incidence of AEs and fewer discontinuations due to AEs
Pan <i>et al.</i> , 2007 ⁷⁶	IGlar+Glim: 120 patients (54.3%) experienced AEs; 22 patients (10%) experienced possibly treatment-related AEs; 10 patients reported 13 SAEs NPH+Glim: 130 patients (58.3%) experienced AEs; 23 patients (10.3%) experienced possibly treatment-related AEs; 12 patients reported 12 SAEs	The majority of the possibly treatment-related AEs were injection site reaction (45 events in 31 patients) IGlar+Glim: 10 patients reported 13 SAEs (3 myocardial infarction, 1 myasthenia, 1 neuropathy, 1 pneumonia, 1 cellulitis, 1 retinal disorder, 1 eye disorder, 1 angina pectoris, 1 arthritis, 1 bone fracture, and 1 cystitis) NPH+Glim: 12 patients reported 12 events (2 hypoglycemia*, 2 myocardial infarction, 2 accidental injury, 1 back pain, 1 breast neoplasm, 1 bone disorder, 1 bone fracture, 1 urinary tract disorder, and 1 enteritis)
Philis-Tsimikas <i>et</i> <i>al.,</i> 2006 ⁷⁰	IDet (morning)+OAD: 123 AEs in 70 patients; 8 SAEs in 8 patients; 1 death in IDet group (could be in evening group) IDet (evening)+OAD: 150 AEs in 67 patients; 5 SAEs in 5 patients NPH+OAD: 144 AEs in 82 patients; 9 SAEs in 9 patients; 1 death	All 3 insulin regimens were well tolerated and no abnormalities were detected in routine biochemical or hematologic investigations or in vital signs. The overall profiles of AEs were statistically similar among 3 groups. Most AEs, including all of the serious events and 2 deaths were considered unrelated to the study insulins. No statistically significant between-group differences were detected in incidences of AEs, serious AEs, and potential allergic reactions possibly related to study medication. Injection site reactions were considered possibly or probably related to the study insulins. IDet (morning)+OAD: 2 injection site reactions in 2 patients; 2 potential allergic reactions in 2 patients IDet (evening)+ OAD: 7 injection site reactions in 6 patients; 5 potential allergic reactions in 5 patients NPH+OAD: 2 injection site reactions in 2 patients; 1 potential allergic reactions in 1 pt
Raskin <i>et al.</i> , 2006 ⁷²	IDet+IAsp: NR	IDet+IAsp: Patients gained 1.4 kg
[Abstract]	IGlar+IAsp: NR	IGIar+IAsp: Patients gained 2.9 kg
Study	Number of Adverse Events in Each Arm	Description of Adverse Events
---	---	--
Raslova <i>et al.</i> , 2004 ⁷¹	IDet+IAsp: 2 patients reported; 5 patients withdrew due to AEs NPH+HI: 3 patients reported; 2 patients withdrew due to AEs	The incidence and pattern of AEs was similar between treatments, with the majority of events being mild and considered unrelated to trial products. SAEs were judged as being possibly/probably related to trial products The incidence of sudden death was considered to be unrelated to the trial products. All people recovered completely. Biochemical standard safety variables were comparable between treatments and no clinically relevant changes were observed. IDet+IAsp: 2 patients with SAE, including one who was hospitalized because of an accidental overdose of insulin and the other due to deterioration in physical ability secondary to shortness of breath at minimal exertion; 5 patients withdrew due to AEs: 1 cutaneous allergic reaction at the insulin injection site, 1 weight gain and peripheral edema, 1 pruritus, 1 shortness of breath on exertion, and 1 sudden death with unknown cause. NPH+HI: 3 patients with SAEs including 1 episode of hypolycemic coma*, one episode of severe hypoglycemia*, and one case of palpitation; 2 withdrawals were due to 1 hyperglycemia* and 1 macropapular rash with breast abscess.
Riddle <i>et al.</i> , 2003 ⁸²	NR	Weight gain reported for both groups
Rosenstock <i>et al.,</i> 2006 ⁷³ [Abstract]	IDet+OAD: NR IGlar+OAD: NR	IDet+OAD: Body weight increased 2.7 kg IGlar+OAD: Body weight increased 3.5 kg
Rosenstock <i>et al.,</i> 2006 ⁸⁸	IGlar: 2 (2%) patients discontinued due to AEs; serious AEs in 5 (4.8%) patients, none considered to be related to treatment Rosi: 9 (8%) patients discontinued due to AEs; serious AEs in 11 (9.8%) patients, 3 considered to be possibly related to treatment	IGlar: gastrointestinal infection (unrelated to treatment), average weight gain of 1.7±0.4 kg; serious AEs NR Rosi: edema (12.5% of patients), average weight gain of 3.0±0.4 kg, nausea, elevated liver function tests (considered to be related to treatment). Serious AEs included overdose, fibroid tumours, and iron deficiency (considered to be possibly related to treatment).
Rosenstock <i>et al.,</i> 2001 ⁷⁴	IGlar: 27 patients (10.4%) experienced treatment-related AEs; 9 withdrew due to AEs NPH: 20 patients (7.7%) experienced treatment-related AEs; 7 withdrew due to AEs	Mild pain or cellulitis at the injection site was the only AEs specified.
Tajima <i>et al.,</i> 2006 ⁹¹	NR	No apparent differences in safety parameters.
Triplitt <i>et al.</i> , 2006 ⁸⁹	IGlar+ Sfu (max) +Metf: No AEs Rosi+ Sfu (max) +Metf: No AEs	Neither therapy was associated with any AEs. No rosiglitazone-treated patient developed edema.
Vinik and Zhang, 2007 ⁹⁰	IGlar+ Sfu (max) +Metf: NR Rosi+ Sfu (max) +Metf: NR	IGlar+Sfu (max) +Metf: 6.7% AEs possibly related to study medication Rosi+Sfu (max) +Metf: 28.6% AEs possibly related to study medication p<0.0001 between the two group comparison.
Wang <i>et al.</i> , 2007 ⁷⁹	IGlar+Glip: NR NPH+Glip: NR	IGlar+Glip: the body weight gain was 1.47±1.04 kg NPH+Glip: the body weight gain was 1.20±1.17 kg

Study	Number of Adverse Events in Each Arm	Description of Adverse Events
Yki-Järvinen <i>et al.</i> ,	IGlar: 33 patients (54%); one serious AE, not considered to be	Most common AEs were infections and musculoskeletal and gastrointestinal
2006 ⁸⁰	related to treatment	disorders, with no differences between the groups
	NPH: 24 patients (49%); 4 serious AEs, not considered to be	IGlar: mean weight gain of 2.6±0.6 kg; serious AE was endometriosis; one
	related to treatment	withdrawal due to pancreatic cancer
		NPH: mean weight gain of 3.5±0.7 kg; serious AEs were anaphylactic reaction, atrial
		fibrillation and cardiac failure, gastroenteritis, and pulmonary emphysema
Yki-Järvinen <i>et al.</i> ,	No difference in treatment-emergent AEs possibly related to	IGlar: mean weight gain of 2.57±0.23 kg
2000 ⁸⁴	study medication	NPH: mean weight gain of 2.34±0.23 kg

*Hypoglycemia can not be separated from other AEs. AE=adverse events; DM=diabetes mellitus; Glim=glimepiride; HI=conventional human insulin; IAsp=insulin aspart; IDet=insulin detemir; IGlar=insulin glargine; Glim=glimepiride; Metf=metformin; NPH=neutral protamine Hagedorn; NR=not reported; OAD=oral antidiabetic agent; Pio=pioglitazone; RCTs=randomized controlled trials; Rosi=rosiglitazone; SAEs=serious adverse events; Sfu=sulfonylurea.

APPENDIX 14: FUNNEL PLOTS

Figure 1: Funnel plot of all RCTs that examined the use of IGlar versus NPH for the treatment of type 1 DM in adult patients – A1c, WMD

A1c=glycosylated hemoglobin; DM=diabetes mellitus; IGIar=insulin glargine; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; SE=standard error; WMD=weighted mean difference.

A1c=glycosylated hemoglobin; DM=diabetes mellitus; Idet=insulin detemir; NPH=neutral protamine Hagedorn; RCTs, randomized controlled trials; SE=standard error; WMD=weighted mean difference.

Figure 3: Funnel plot of all RCTs that examined the use of IGIar versus NPH for the treatment of type 1 DM in adult patients – Severe hypoglycemia: Events

DM=diabetes mellitus; IGar=insulin glargine; log RR=log of the relative risk for hypoglycemia; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk; SE=standard error.

100 RR (fixed)

Figure 4: Funnel plot of all RCTs that examined the use of IGlar versus NPH for the

DM=diabetes mellitus; IGlar=insulin glargine; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials.

DM=diabetes mellitus; IGlar=insulin glargine; log RR=log of the relative risk for hypoglycemia; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk; SE=standard error.

Figure 6: Funnel plot of all RCTs that examined the use of IDet versus NPH for the treatment of type 1 DM in adult patients – Severe hypoglycemia, RR

DM=diabetes mellitus; IDet=insulin detemir; log RR=log of the relative risk for hypoglycemia; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk; SE=standard error.

Figure 7: Funnel plot of all RCTs that examined the use of IDet versus NPH for the treatment of type 1 DM in adult patients – Rate ratio of severe hypoglycemia

DM=diabetes mellitus; IDet=insulin detemir; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials.

DM=diabetes mellitus; IDet=insulin detemir; log RR=log of the relative risk for hypoglycemia; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk; SE=standard error.

DM=diabetes mellitus; IDet=insulin detemir;NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; SE=standard error.

DM=diabetes mellitus; IDet=insulin detemir; log RR=log of the relative risk for hypoglycemia; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; RR=relative risk; SE=standard error.

Figure 11: Funnel plot of all RCTs that examined the use of IDet versus NPH for the treatment of type 1 DM in adult patients – Rate ratio of overall hypoglycemia

DM=diabetes mellitus; IDet=insulin detemir; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials.

DM=diabetes mellitus; IDet=insulin detemir; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials; SE=standard error; WMD=weighted mean difference.

Figure 13: Funnel plot of all RCTs that examined the use of IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – A1c WMD

Arc=glycosylated hemoglobin; DM=diabetes mellitus; IGIar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; SE=standard error; WMD=weighted mean difference.

DM=diabetes mellitus; FPG=fasting plasma glucose; IGlar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; SE=standard error; WMD=weighted mean difference.

Figure 15: Funnel plot of all RCTs that examined the use of IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – RR of severe hypoglycemia

DM=diabetes mellitus; IGIar=insulin glargine;log RR=log of the relative risk for hypoglycemia; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; RR=relative risk; SE=standard error.

DM=diabetes mellitus; IGIar=insulin glargine; log RR=log of the relative risk for hypoglycemia; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic; RCTs=randomized controlled trials; RR=relative risk; SE=standard error.

Figure 17: Funnel plot of all RCTs that examined the use of IGlar+OAD versus NPH+OAD for the treatment of type 2 DM in adult patients – RR of overall hypoglycemia

DM=diabetes mellitus; IGIar=insulin glargine; log RR=log of the relative risk for hypoglycemia; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; RR=relative risk; SE=standard error.

DM=diabetes mellitus; IGIar=insulin glargine; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; SE=standard error; WMD=weighted mean difference.

APPENDIX 15A: STUDY-LEVEL QUALITY OF LIFE AND PATIENT SATISFACTION DATA FOR RCTS IN TYPE 1 DM*

Study	Treatment		DTSQ				WBQ					
		Total (Scale)	Satisfaction (Scale)	Convenience (Scale)	Flexibility (Scale)	Willingness to Continue (Scale)	Total	Depression	Anxiety	Energy	Positive Well- Being	Others (Perceived Frequency of Hyperglycemia)
Witthaus <i>et al.</i> , 2001 ⁵⁸	IGlar+HI	+1.27 (from baseline), p<0.001	0.37, p=0.002	0.32, p<0.001	0.25, p<0.001	0.39, p<0.001	1.22 (from baseline), NS	-0.19, NS	-0.31, NS	0.33, NS	0.39, NS	-0.55, p=0.038
	NPH+HI	-0.56	0.08	0.09	0.00	-0.24	1.57	-0.24	-0.53	0.40	0.35	-0.30

* Only RCTs reported the quality-of-life data are listed here. DM=diabetes mellitus; DTSQ=Diabetes Treatment Satisfaction Questionnaire; IGIar=insulin glargine; HI=human insulin; NPH=neutral protamine Hagedorn; NS=not significant; RCTs=randomized controlled trials; WBQ=well-being questionnaire.

APPENDIX 15B: STUDY-LEVEL QUALITY OF LIFE AND PATIENT SATISFACTION DATA FOR RCTS IN TYPE 1 DM*

Study	Treatment		Resu	lts				
Eliaschewitz <i>et</i> <i>al.</i> , 2006 ⁷⁷	IGlar+ glimepiride NPH+	DTSQcBaseline: 12.6±5.9Endpoint: 16.6±2.6Baseline: 12.5±6.3Construction: DTSQ scoresP=<0.02 (changes from baseline: IGlar vs. NPH)						
Oster <i>et al.,</i> 2006 [abstract] ⁸⁶	glimepiride IGlar Pioglitazone	Endpoint: 16±3.3 HRQoL assessments were conducted at baseli Revised (DSC-R), the Emotional Well-being sca Short-Form Health Survey (SF-36). A total of 2	Indpoint: 16±3.3 HRQoL assessments were conducted at baseline and at each 10 follow-up visits and included the 34-item Diabetes Symptom Checklist– Revised (DSC-R), the Emotional Well-being scales, and General Health Perceptions scales from the Medical Outcomes Study 36-item Short-Form Health Survey (SE-26). A total of 220 patients completed the baseline and week-48 HROOL assessments (n=118, IClar: n=112)					
Meneghini <i>et</i> <i>al.</i> , 2006 [abstract] ⁸⁷		Pio). HRQoL change scores from baseline to week 48 generally favoured IGIar; findings were statistically significant ($p<0.05$) for the domains of hyperglycemia distress, fatigue distress, and total distress. In multivariate repeated-measure analyses, IGIar was associated with significantly better outcomes for hyperglycemia symptoms ($p\leq0.001$), ophthalmologic symptoms ($p=0.004$), hyperglycemia distress ($p<0.001$), hypoglycemia distress ($p=0.014$), fatigue distress ($p=0.005$), ophthalmologic distress ($p<0.001$), and cardiovascular distress ($p=0.025$). Poorer HRQoL was associated with early study termination and higher A1C values. In oral monotherapy failures, IGIar yielded better glycemic control and better HRQoL than Pio						
Vinik and Zhang, 2	2007 ⁹⁰	Item	HRQOL score:		comments			
[IGlar+SU+Metf vs. rosiglitazone+SU+Metf]		Hyperglycemia symptoms Hyperglycemia distress Mood symptoms Mood distress Cardiovascular symptoms Cardiovascular distress Neuropathic sensory symptoms Neuropathic sensory distress Neuropathic pain symptoms Neuropathic pain distress Fatigue symptoms Fatigue distress* Cognitive symptoms Cognitive distress Ophthalmologic symptoms Ophthalmologic distress	42.8±36.1 33.8±16.3 34.3±38.2 30.6±14.2 23.1±29.8 27.5±10.9 30.9±31.2 29.7±12.1 19.3±31.1 27.1±14.0 55.5±39.9 42.5±21.2 35.8±35.9 32.5±15.7 26.9±31.0 27.9±11.6	35.7±34.4 32.2±16.1 27.4±35.9 28.8±14.2 19.5±24.8 26.0±8.9 29.5±32.1 29.2±12.3 15.6±24.1 25.2±8.8 47.8±37.0 36.2±17.1 30.8±32.9 29.4±12.5 21.9±27.8 25.6±7.9	Fatigue distress* (p=0.017) between groups. P-values for all other HRQoL were NS. Pts with glargine had higher scores in all the diabetes symptom checklist-revised symptoms and distress domains, including total scores for symptoms and distress.			

Study	Treatment	Results				
		Total symptoms	33.3±23.8	28.4±21.4		
		Total distress	31.3±10.5	29.0±8.7		
		Perception of general health	46.3±21.6	50.5±21.0		
		Emotional well-being	74.1±18.4	76.7±18.4		

* Only RCTs reporting QOL data are listed here. DM=diabetes mellitus; DTSQ=Diabetes Treatment Satisfaction Questionnaire; DTSQc=Diabetes Treatment Satisfaction Questionnaire Change; HRQOL=health-related quality of life; IGIar=insulin glargine; Metf=metformin; NPH=neutral protamine Hagedorn; NS=not significant; Pio=pioglitazone; QOL=quality of life; RCTs=randomized controlled trials; SU=sulfonylurea; vs.=versus.

APPENDIX 16A: STUDY-LEVEL MORTALITY DATA FROM RCTS IN TYPE 1 DM*

Study	Comparators	No. of Patients at Baseline	Treatment Duration	Number of Deaths (%)	Cause of Death
Hermansen	IDet+IAsp	298	18 weeks	none	NA
<i>et al.</i> , 2004 ⁴⁹	NPH+HI	297	18 weeks	1	Due to a lung tumour, unlikely to be related to the trial products
Kolendorf <i>et</i>	IDet+IAsp	131	16 weeks	none	NA
<i>al.</i> , 2006 ³⁹	NPH+IAsp	131	16 weeks	1	Died from a myocardial infarction during the first treatment period while receiving NPH
Pieber <i>et al.</i> ,	IDet _{m+d} +IAsp	139	16 weeks	none	NA
2005 ⁴²	IDet _{m+b} +IAsp	132	16 weeks	1	Unknown
	NPH _{m+b} +lAsp	129	16 weeks	none	NA
Raskin <i>et al.</i> ,	IGlar+ILis	310	16 weeks	none	NA
2000 ⁵⁹	NPH+ILis	309	16 weeks	none	NA
Ratner <i>et al.</i> ,	IGlar+HI	264	28 weeks	none	NA
2000 ⁵⁶	NPH+HI	270	28 weeks	1	Death secondary to cardiopulmonary arrest, not considered to be related to study medication

*Only RCTs reporting mortality data are listed. DM=diabetes mellitus; IAsp=insulin aspart; IDet=insulin detemir; IGlar=insulin glargine; ILis=insulin lispro; HI=human insulin; m+b=morning and bedtime; m+d=morning and dinner time; NA=not applicable; NPH=neutral protamine Hagedorn; RCTs=randomized controlled trials.

APPENDIX 16B: STUDY-LEVEL MORTALITY DATA FOR RCTS IN TYPE 2 DM*

Study	Treatment (tx) Arm	No. of Patients at Baseline	Treatment Duration	Number of Deaths (%)	Cause of Death
Eliaschewitz <i>et al.</i> , 2006 ⁷⁷	lGlar+Glim	231	24 weeks	none	NA
	NPH+Glim	250	24 weeks	none	NA
Fritsche <i>et al.</i> , 2003 ⁷⁸	IGlar (morning)+Glim	236	24 weeks	none	NA
	IGlar (bedtime)+Glim	227	24 weeks	2	Not related to study medication
	NPH (bedtime)+Glim	232	24 weeks	1	Not related to study medication
Haak <i>et al.</i> , 2005 ⁶⁸	IDet+IAsp	341	26 weeks	1	Patient had history of coronary heart disease; death not considered to be related to study medication
	NPH+IAsp	164	26 weeks	none	NA
Massi Benedetti <i>et al.,</i> 2003 ⁸¹	lGlar	289	52 weeks	1	Not considered to be related to study medication
	NPH	281	52 weeks	6	Not considered to be related to study medication
Meneghini <i>et al.,</i> 2005 ⁸⁵	IGlar+OAD vs. Pioglitazone+OAD	253	48 weeks	1	Patient in IGlar+OAD treatment arm died from multiple blunt trauma
HOE 901/2004 Study	IGlar [30]+OAD	64	4 weeks	none	NA
group, 2003 ⁸³	IGlar [80]+OAD	72	4 weeks	none	NA
	NPH+OAD	68	4 weeks	none	NA
Philis-Tsimikas <i>et al.</i> , 2006 ⁷⁰	IDet	169	20 weeks	1	Due to cerebrovascular accident, unrelated to the study insulin
	NPH	164	20 weeks	1	Due to cerebrovascular accident, unrelated to the study insulin
Raslova <i>et al.</i> , 2004 ⁷ '	IDet+IAsp	195	22 weeks	1	Unknown cause for death and considered to be unrelated to the trial product
	NPH+HI	199	22 weeks	none	NA

*Only RCTs reporting mortality data are listed. DM=diabetes mellitus; Glim=glimepiride; IAsp=insulin aspart; IDet=insulin detemir; IGlar=insulin glargine; m+b=morning and bedtime; m+d=morning and dinner time; NA=not applicable; NPH=neutral protamine Hagedorn; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; tx=treatment; vs.=versus.

APPENDIX 17: STUDY-LEVEL BLOOD PRESSURE DATA FROM RCTS IN TYPE 2 DM

Study	Comparators	BP at Baseline (mmHg)	BP at Endpoint (mmHg)	BP Change From Baseline (mmHg)	p-value Endpoint vs. Baseline	p-value Between Treatments
Triplitt <i>et al.</i> ,	lGlar	SBP	SBP	NR	NS	p<0.01
2006 ⁸⁹		131±4*	129±5*			
		DBP	DBP		NS	
		69±2*	70±3*			
	rosiglitazone	SBP	SBP	NR	NS	
		127±4*	129±4*			
		DBP	DBP		p<0.05	
		67±2*	60±4*			
Yki-Järvinen <i>et</i>	IGlar+OAD	SBP	SBP	NR	NR	Remain unchanged
<i>al.</i> , 2000 ⁸⁴		145±1*	145±1*			
		DBP 84±1*	DBP 83±1*			
	NPH+OAD	SBP	SBP	NR	NR	
		145±1*	145±1*			
		DBP 85±1*	DBP 82±1*			

*mean±SE. BP=blood pressure; DBP=diastolic blood pressure; DM=diabetes mellitus; IGIar=insulin glargine; NPH=neutral protamine Hagedorn; NR=not reported; NS=not significant; OAD=oral antidiabetic agent; RCTs=randomized controlled trials; SBP=systolic blood pressure; vs.=versus.

APPENDIX 18: STUDY-LEVEL CHOLESTEROL – LDL DATA FROM RCTS IN TYPE 2 DM

Study	Comparators	LDL at Baseline	LDL at Endpoint	LDL Change From Baseline	p-value Endpoint vs. Baseline	p-value Between Treatments
Rosenstock <i>et al.</i> ,	IGlar+Sfu (max)+Metf	117 mg/dL	115 mg/dL	-1.4 %	NR	p=0.002
2006 ⁸⁸	Rosi+Sfu (max)+Metf	106 mg/dL	120 mg/dL	13.1%	NR	
Triplitt <i>et al.</i> ,	lGlar	119±10* mg/dL	103±7* mg/dL	NR	p=0.03	p=0.003
2006 ⁸⁹	rosiglitazone	103±11* mg/dL	142±9* mg/dL	NR	p=0.03	
Yki-Järvinen <i>et</i>	IGlar+Metf	2.8±0.1* mmol/L	2.8±0.1* mmol/L	NR	NR	Remained
<i>al.</i> , 2006 ⁸⁰	NPH+Metf	2.9±0.1* mmol/L	2.9±0.1* mmol/L	NR	NR	unchanged
Yki-Järvinen <i>et</i>	IGlar+OAD	NR	3.21±0.06* mmol/L	NR	NR	No difference
<i>al.</i> , 2000 ⁸⁴	NPH+OAD	NR	3.27±0.08* mmol/L	NR	NR	between the treatments

*mean±SE. DM=diabetes mellitus; IGlar=insulin glargine; LDL=low-density lipoprotein; Metf=metformin; NPH=neutral protamine Hagedorn; NR=not reported; OAD=oral antidiabetic; RCTs=randomized controlled trials; Rosi=rosiglitazone; Sfu=sulfonylurea; vs.=versus.